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Resumo

No desenvolvimento de aplicações empresariais, a tendência tem sido relaxar os critérios de

consistência oferecidos pelo middleware transacional, procurando melhorar a escalabilidade

e o desempenho desses sistemas. Tal decisão coloca novos desafios aos programadores de

software: Estes têm de ter presente esta consistência fraca ao programar a lógica aplicacional,

o que tipicamente conduz a um esforço extra de desenvolvimento para lidar com possı́veis

inconsistências resultantes de execuções concorrentes, o que não é trivial e propicia erros

nos programas.

Nesta dissertação, eu proponho o desenho de um novo sistema de middleware que fornece

transações com consistência forte e, ao mesmo tempo, melhora o desempenho das aplicações

empresariais cujas operações são predominantemente de leitura. Este desenho baseia-se

na mudança do controlo transacional da base de dados para o código da aplicação. Para

isso usa a tecnologia de Memória Transacional de Software para garantir a consistência

forte e estende a MTS com as capacidades de operar com dados persistentes e funcionar

em ambiente distribuı́do. Eu apresento duas implementações complementares do sistema

de middleware: Primeiro uma alternativa mais simples baseada no uso de trincos—mais

adequada para aplicações de um só servidor—e depois uma alternativa que usa sincronização

não bloqueante baseada na primeira MTS multi-versão completamente livre de bloqueios, que

também é proposta nesta dissertação.

Os resultados experimentais obtidos com as duas implementações mostram que este

desenho melhora consistentemente o desempenho das aplicações empresariais tı́picas—em

até cem vezes nalgumas configurações—garantindo ainda transações com consistência forte.





Abstract

The trend in the development of enterprise applications has been to relax the consistency

guarantees provided by the transactional middleware, with the goal of improving the result-

ing systems’ scalability and performance. Such decision, however, poses new challenges to

software developers: They must now take into account this weaker semantics when pro-

gramming application logic, which typically leads to additional, nontrivial and error-prone

development effort, to cope with possible inconsistencies produced by concurrent executions.

In this dissertation, I propose a new middleware design that provides transactions with

strong consistency and, at the same time, improves the performance of the typical read-

dominated workloads observed in enterprise applications. This design is based on seam-

lessly shifting transaction control from the database into the application code. It does so

using Software Transactional Memory to ensure strong consistency, and then extending the

STM with additional capabilities to handle persistent data and to operate in a clustered en-

vironment. I present two complementary middleware implementations based on the same

principle: First, a simpler lock-based alternative—best suited for single-node applications—

and then a nonblocking alternative based on the first entirely lock-free multi-version STM,

which is also proposed in this dissertation.

The experimental results obtained with the implementations of this middleware design

confirm that it consistently improves the performance of the typical workloads—by as much

as a hundredfold in some configurations—while executing strongly consistent transactions.
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1Introduction

Transactions are undoubtedly a useful mechanism in the development of software. Many

applications use transactions or an equivalent mechanism to execute blocks of code atomi-

cally, with an all-or-nothing semantics. In case of success, the effects of a transaction appear

to occur at a single point in time, and if, for some reason, the transaction fails, the state of

the application, prior to executing the transaction, is restored automatically. Application

programmers also expect their transactions to execute in isolation from other concurrent

changes, and for the visible effects of a transaction to be consistent with the other computa-

tions.

Traditionally, transactions have been associated with databases. However, the use of

transactions goes beyond such context and has been applied in more systems. Initially, up-

holding transactional consistency was relatively simple, because databases where monolithic

and centralized. The existing computational power was at the time located in a single big

server and changes to shared data were contained in the same shared memory space, which

made them easy to track.

The evolution in computer systems led to a pervasive existence of computer hardware

with enough computational power to store and to operate over large amounts of data. The

concept of a transaction has remained useful, but as systems grew and became more com-

plex, widespread, and interconnected, ensuring the original strong transactional semantics

became expensive and a hindrance to scalability and performance.

As a result of these two forces, for one the usefulness of transactions—hence the desire to

continue to use them in programming software applications—and for another the increased

difficulty in upholding the transactional semantics in complex systems, transactions have

evolved to provide several different semantics, most notoriously, with lessened consistency

guarantees.

This varied set of transactional semantics makes it more difficult for programmers to

write code: Not only are the guarantees that transactions provide typically weaker, but also
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it is often difficult to understand the resulting interplay of concurrent transactions in the

presence of weak consistency models, or even that of systems with different transaction

models.

In this dissertation, I leverage on (1) the evolution of computational power, (2) research on

transactions—especially in Software Transactional Memory (STM)—and (3) the typical archi-

tecture and workloads of enterprise applications to propose a transactional middleware that

ensures strong consistency for transactions, while being able to improve the performance

of access to transactional data in the common case. The solution that I propose is not a

panacea, as not all workloads may benefit of the performance improvements. Nevertheless,

even under the circumstances where the performance does not improve, this approach is

still of use when some performance penalty may be an acceptable price to pay compared to

the gains brought about by the strongly consistent transactions.

In the remainder of this chapter, first I present my thesis statement, then I summarize

the contributions of my work and, lastly, I describe the structure of this dissertation.

1.1 Thesis Statement

From a software engineering perspective, I aim to reduce the effort required to develop ap-

plications. I believe that providing a transactional model that offers strong consistency con-

tributes to this goal. Apparently, however, to provide strong consistency negatively affects

performance so much so that the trend has been for transactional systems to relax consis-

tency in favor of performance.

This dissertation’s thesis is that it is possible to provide a model of strongly

consistent transactions to application developers and, simultaneously, to im-

prove the performance for the typical workloads of a class of applications,

by using a middleware that leverages on recent advancements both in hardware

and in software.

More specifically, I propose to combine the use of recent computers with commodity

hardware featuring many cores and large amounts of main memory with STM, to be able:

• To shift transaction control from its typical location—the Database Management System

(DBMS)—to a dedicated component that is integrated into the application tier, thereby
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being as close as possible to where the data-manipulation transactional operations take

place. This component is implemented using STM, and it provides transactions with

strong consistency. Unlike typical transactional systems, whose consistency semantics

depends, to some degree, on the consistency semantics of the underlying DBMS, the

solution that I propose always provides strong consistency, regardless of the guarantees

offered by the concrete DBMS in use.

• To improve the performance of read-dominated workloads in domain-intensive applica-

tions, by greatly reducing the cost of the reads of transactional data. This is achieved

by using an STM-backed cache for the transactional data accessed by the applica-

tion: This cache reduces or, in some cases, even eliminates the need for round trips to

fetch data from the DBMS, and it provides much faster reads than the typical cost of

accessing the DBMS. This is true even when compared to using in-memory DBMSs.

In this dissertation, I provide the design of a concrete middleware, dedicated to the sup-

port of transactions in enterprise applications. This middleware, which provides strongly

consistent transactions regardless of the underlying DBMS, can seamlessly replace the ex-

isting transactional system of an enterprise application and it relies on the DBMS for data

storage only. Moreover, it poses very few requirements on the DBMS, making it practical to

use this middleware with virtually any DBMS.

To demonstrate the feasibility of this solution and validate my thesis, I perform a complete

implementation of the proposed middleware and perform an evaluation, in which I measure

application performance with and without using this middleware, for a set of representative

workloads and application deployment variations, on top of some of the available DBMSs

currently in use.

1.2 Contributions

In this dissertation, I provide the following contributions:

• I propose a new architecture for enterprise applications, which shifts transac-

tion control to a dedicated component, built with STM. This component pro-

vides to its application a well defined and strong transactional semantics that, unlike

traditional designs, is independent of the transactional semantics of the underlying
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DBMS of choice. Additionally, this design can greatly improve the performance of

read-dominated workloads by reducing the cost of the accesses to shared data.

• To implement the design that I propose, I develop a straightforward extension of

the Java Versioned Software Transactional Memory (JVSTM) with support for

both data durability and deployment of multiple application instances in a clus-

ter environment. This extension is designed with evolution in mind, by making it

practical to replace the transactional system of existing applications, and by using the

existing DBMS to store application data. As such, the extended version of the JVSTM

immediately enables developers to use STM in real-world enterprise applications.

• I develop a new efficient and nonblocking (lock-free) commit algorithm for the in-

memory JVSTM only. This new algorithm eliminates the potential bottleneck of the

single commit lock, used in the original JVSTM, and it increases the scalability and

performance of the JVSTM when executing write transactions in systems with many

cores, where factors such as (1) the percentage of write transactions, (2) the number

of concurrent transactions and (3) the duration of the commit phase could impair the

performance of the JVSTM and, consequently, of the application. Also, I develop a new

Garbage Collection (GC) algorithm for the lock-free JVSTM, which asynchronously

cleans up unreachable versions and reduces the overhead of starting/finishing a trans-

action, imposed by the existing GC. The lock-free commit algorithm stems from the

need to improve the performance of the extended JVSTM, which increases the duration

of the commit phase, by holding the commit lock while communicating with the DBMS.

The new GC algorithm stems from the performance improvements obtained with the

lock-free commit, which unveiled a dormant bottleneck in the original GC. Both im-

provements target the in-memory JVSTM. To the best of my knowledge, this is the first

entirely lock-free implementation of a multi-version STM.

• I integrate the previous two contributions into the design of a best-effort nonblock-

ing STM-based middleware for transactional support in enterprise applications.

By best-effort, I mean that my entire implementation of this middleware is nonblock-

ing. However, because it depends on two external components—the underlying DBMS

and the distributed communication infrastructure—whether the full middleware stack

behaves in a nonblocking fashion depends on the concrete implementations of these

external components.
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1.3 Structure of the dissertation

In this introductory chapter, I focus on the presentation of my thesis statement, the sum-

mary of the contributions from my work, and the outline of the remaining chapters in this

dissertation, which are structured as follows:

Chapter 2 Context, Problem Statement, and Solution Overview. This chapter provides

the background for my work. I begin with an historical overview of enterprise application

development, where I frame its evolution in a path that has lead to the current state, in which

programmers are burdened by the lack of a strong transactional semantics. I discuss the

problems associated with this deficiency, and state the problem that I address with my thesis

statement. Afterwards, I present the proposed approach to the solution and some statistical

data on the use of STM in real-world enterprise applications, which further motivates my

work and substantiates the viability of my design choices.

Chapter 3 TMM: A Transactional Memory Middleware for Enterprise Applications.

This chapter presents the basic solution that provides transactions with strong consistency

and improved performance for the typical workloads of enterprise applications. It describes

how to integrate STM into existing enterprise applications, and how to extend the in-memory

STM, thereby creating a middleware with support for data storage and the ability to de-

ploy multiple application nodes running STM-backed transactions with strong cluster-wide

consistency.

Chapter 4 Lock-free JVSTM. Even tough adequate for a single node, the solution from the

previous chapter has poor scalability when applied to a distributed system, due to the use

of a global lock. In this chapter, I concentrate on the scalability of the in-memory STM: I

present the modifications to the original lock-based STM—namely the new commit and GC

algorithms—which improve its performance and enable it to scale for a large number of cores

in a single machine. This new STM implementation is entirely nonblocking, more specifically

lock-free.

Chapter 5 Nonblocking TMM. This chapter combines the ideas proposed in the two previ-

ous chapters, resulting in an STM-based middleware that can be integrated into enterprise

applications to provide transactions with global ordering and strong consistency, without

requiring a global lock. The resulting STM implementation is also nonblocking, apart from

any blocking synchronization used by the underlying Application Programming Interface (API)

on which the STM depends—namely the distributed communication mechanisms and data
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storage operations. If these APIs can be guaranteed to never block indefinitely, then the STM

implementation is in effect nonblocking as well.

Chapter 6 Conclusions. This chapter concludes my dissertation with a summary of the

work presented and possible directions for future work.

1.4 Notation

In this dissertation, I need to present and discuss some algorithms. I will show them in

listings format, using code written in the Java language. Given that the main goal of showing

the code is to clearly convey the algorithms to the reader, for the sake of clarity in the

presentation, I have removed accessorial things, such as visibility qualifiers. Exceptions have

been made where relevant. Also, often, I elide some details from the actual implementation

when they are not relevant to the part of the algorithm being addressed: As such, I use ‘‘. . . ’’

(ellipsis) to represent code that as been elided. I discretionarily use bold font to highlight

some parts of the code shown, typically method names and class attributes. When reusing

or extending parts of an algorithm that has been shown previously, I use a faded gray color.

When referring to elements of code in running text I use a typewriter font.
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2Context, Problem Statement,
and Solution Overview

This chapter sets the background on top of which my work is based. I begin by presenting a

perspective on the evolution of enterprise application development, in which I focus on how it

has affected the transactions’ consistency and overall application performance, leading to the

status quo in which programmers are burdened with additional nontrivial and error-prone

coding effort. After that, I present STM and associated concepts that are relevant for the

work in this dissertation. Afterwards, I state the problem that I intend to address, and I

outline the solution that I propose to implement. In doing so, I also provide statistical data

that backs up some of the assumptions I make regarding some characteristics of typical

enterprise applications.

2.1 A Historical Perspective of Transactions in Enterprise Ap-
plications

Over the last forty years, the development of enterprise applications has evolved, influenced

by diverse factors such as the changes in hardware, or the changes in the users’ expectations

about how applications should behave. Often, these changes had a reflection in the archi-

tecture of applications. Still, one thing has remained the same for most applications: The

underlying DBMS provides not only persistence but also the semantics of the transactions

on which application developers rely for programming business transactions.

Unfortunately, this means that, when using transactions, developers tend to be limited

by the isolation levels provided by the DBMS, which often does not provide serializability—a

correctness property for concurrent transactions that is crucial to ensure the integrity of the

applications’ data.

Historically, transactional systems have weakened the isolation level of transactions as

a trade-off between correctness and performance, which resulted in the generally accepted

idea that serializability is incompatible with performance. This line of reasoning is clearly

illustrated by the following passage from Martin Fowler’s well-known book on patterns of
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enterprise application architecture [Fowler, 2002]:

To be sure of correctness you should always use the serializable isolation level.

The problem is that choosing serializable really messes up the liveness of a sys-

tem, so much so that you often have to reduce serializability in order to increase

throughput. You have to decide what risks you want take and make your own

trade-off of errors versus performance.

You don’t have to use the same isolation level for all transactions, so you should

look at each transaction and decide how to balance liveness versus correctness

for it.

Even though this book is from 2002, I believe that it still represents faithfully the actual

state of the practice in the development of most enterprise applications, in which consistency

is often traded-off for performance.

One of the problems with the existence of weaker transactional semantics is that it bur-

dens developers with additional, nontrivial and error-prone development effort, especially

when developing applications that require stronger semantics than what is provided by the

transactional system being used. The ability to program using serializable transactions sim-

plifies the reasoning, reduces the possibility of bugs, and reduces the overall development

effort. However, this option—to use strongly consistent transactions—is seldom, if ever, avail-

able to developers.I shall return to this problem in more detail later in this chapter. Before

that, however, I provide a brief historical perspective of the development of client/server

applications and relate it to the status quo of enterprise application development.

In this dissertation, I use the term database as a general term to refer to a destination

designated for storage of application data. A DBMS is a component that provides users or

applications with an interface to manipulate stored data, possibly using transactions. His-

torically, DBMSs are associated with the storage of data using the relational model and with

providing a Structured Query Language (SQL) interface for the data manipulation operations.

Throughout this dissertation, when referring to a database or a DBMS, I do not intend to

imply any concrete system, such as the underlying data model or the topology of data or-

ganization, unless specifically mentioned: Both should be considered in their most generic

definition.
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2.1.1 The Shift From a 2-tier to a 3-tier Architecture

A core component of most modern enterprise applications is a DBMS, and its use in such

applications goes a long way back. The first enterprise applications were 2-tiered—that is,

they had a simple client/server architecture. The clients made their requests directly to

the database server, which in turn executed the requested operations and gave back the

results. This architecture was adequate in a scenario where all the clients were on a trusted

network and most of the computational power resided on a big server. In this architecture,

transactional control was placed in the (only) obvious location: The database server. Each

client request would perform within a database transaction, and the server ensured the ACID

properties [Gray, 1981].

Database servers were expensive and they had to cope with a growing usage demand.

Eventually, different semantics for the ACID properties appeared, which relaxed some of the

properties (e.g., isolation [International Standards Organization, 1992]), mostly for perfor-

mance reasons. As client machines became more and more powerful, more computation

could be performed on the client side, which would also take part in ensuring data consis-

tency. Business logic consistency started to get more complex than simple low-level con-

sistency checking (e.g., referential integrity), including complex high-level consistency (e.g.,

a list can only contain odd numbers). Often, in this architecture the business logic code

was intertwined with the user interface code. Nevertheless, transaction control remained

centralized on the server.

With the growth of the internet and the World Wide Web, a new architecture emerged. As

organizations felt the need to interconnect their systems, the 2-tiered architecture no longer

served their purposes. There were several reasons for this, including the systems’ security

and the use of network bandwidth. The clients (now including systems in diverse geograph-

ical locations and outside the control of the intranet) were no longer trusted. The number of

clients grew. The available bandwidth was far less than it was previously available on the

intranet, such that sending large volumes of data, as the result of a database query, was no

longer viable. This led to a 3-tiered architecture on which the server side was decomposed in

two tiers: One for the application server and another for the database server. The database

server was still responsible for the data persistence and for ensuring transactional access

to its data. The application server was responsible for executing the complex business logic

and interfacing with the clients, which would provide the user interface. This new archi-

tecture presented, at least, two main advantages over the previous: (1) the information was
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kept safe within the intranet and it was only accessed directly by a trusted system; and (2)

large queries could be obtained and processed on the server-side before sending the results

over the internet to the clients. The downside, with regard to transactions, was that the

transaction logic was coded in the application server, whereas the responsibility for ensuring

transactional properties was in the database server. Application server logic was typically

stateless and relied on the data stored in the database to process every client request, which

meant that adding more application servers was cheaper and simpler than adding database

servers. So, database performance was still a critical aspect in this architecture and, notably,

relaxed transactional semantics remained in use.

2.1.2 Application Logic Becomes Increasingly Complex

As the internet and the number of interconnected servers kept growing, another revolution

was taking place in the software development area: Object-Oriented Programming (OOP) lan-

guages became mainstream and started to be used commonly in the development of large

server-side applications. Characteristics such as component modularization, ease of reuse,

data encapsulation, and abstraction, helped developers control the growing complexity of

their applications.

The adoption of OOP, however, created a mismatch between the most common persistent

representation of data and their in-memory representation, known as the object-relational

impedance mismatch [Ireland et al., 2009]. The development of Object-Relational Mapping

(ORM) tools was the industry’s answer to handle this mismatch. The purpose of an ORM

tool is to take care of the data mapping between the object-oriented model and the relational

model, such that the programmers could write code in the OOP environment and the ORM

layer would handle the conversion from/to the underlying relational structure. Whereas, in

part, these tools simplified the programmers’ coding efforts, they also created some difficulties

of their own, such as the maintenance of O/R-mapping metadata, and the varied semantics

implied by object caching, lazy loading, and support for ad hoc queries. Additionally, different

ORMs provided different semantics.

Yet, most notably, the features provided by ORM tools kept depending on transactional

support that was still under the responsibility of the underlying DBMS, which, in turn, still

offered different flavors for ACID semantics, but none included support for strict serializabil-

ity [Papadimitriou, 1979]. In fact, the isolation guarantees provided by databases have been,

for long, a matter of confusion and discussion [Berenson et al., 1995].
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2.1.3 The Growth in Computational Power

Up until recently, powerful database servers were very expensive and held much computa-

tional power when compared to the simpler application servers. In recent years, however, the

computational power has grown dramatically, which has brought about commodity hardware

that features many CPU cores and large amounts of main memory at a very low cost.

The availability of many low-cost and powerful servers together with the improvements

in network technology have contributed to a reinvigorated interest in distributed comput-

ing, quite notoriously pushed through cloud computing: This form of computing relies on

economies of scale to offer clients an abstract view of computational resources that can be

provisioned on demand over a computer network (commonly referred to as the cloud).

Concomitantly, there has been the development of new programming models (e.g. Map-

Reduce [Dean and Ghemawat, 2008]), large scale data storage systems (e.g. Amazon’s

S3 [Brantner et al., 2008]), along with various (weakened) consistency models (e.g. Eventual

Consistency [Vogels, 2009; Pritchett, 2008]).

Meanwhile, the scalability and overall appropriateness of relational DBMSs was being

questioned [Stonebraker et al., 2007] and distributed NoSQL key-value data stores were

emerging as the de facto standard DBMS in the cloud, with the creation of a multitude of

key-value data store implementations, such as BerkeleyDB [Olson et al., 1999], Dynamo [De-

Candia et al., 2007], Cassandra [Lakshman and Malik, 2010], Oracle Coherence [Seovic et al.,

2010], HBase [Jiang, 2012], Infinispan [Marchioni and Surtani, 2012], Hazelcast [Johns,

2013], and several others.1 A key-value store uses a simple data model that maps an ar-

bitrary name (key) to arbitrary data (value). These are typically, but not exclusively, imple-

mented as an In-Memory Data Grid (IMDG) as a means to reduce the costs associated with

disk-bounded operations, typical of traditional DBMSs. An IMDG is a type of DBMS that

primarily relies on main memory for data storage. A major benefit of using an IMDG is the

performance improvement achieved by using the main memory for storing data, which is

much faster than using external storage. When data durability is a requirement, it may be

provided by writing data to traditional DBMSs, by using new nonvolatile memory technology,

or simply by ensuring that a minimum number of data replicas always exist. An IMDG also

leverages on the fact that most workloads in enterprise applications are read-dominated, so

that, even when using a disk-based solution for data durability, most operations will still be

1A growing list of key-value stores is maintained at http://en.wikipedia.org/wiki/NoSQL#Key.E2.
80.93value_stores.
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much faster, as they access main memory only.

In spite of the growing popularity of different systems and models for transactions and

data storage, relational DBMSs are still widely used, with anecdotal evidence2 suggesting

that they are still the predominant type of DBMS.

Just as in early evolution of enterprise application architecture, a common theme in all

these recent developments, is that the focus has been on improving performance: Unfortu-

nately, it has come at the expense of reducing the consistency guarantees. To this effect have

contributed not only the perseverance of old ideas about the development of databases and

transactions, but also demonstrations of how consistency requirements can affect other de-

sirable properties in a distributed system, namely availability and partition tolerance [Brewer,

2000; Gilbert and Lynch, 2002].

The natural evolution in software and hardware has led to the current state, in which

many developers depend on a multi-tiered architecture, develop enterprise applications with

complex transactional logic, and rely (either directly or indirectly) on a DBMS for persistence

and transactional support.

2.2 Software Transactional Memory

Since the seminal work on Transactional Memory (TM) [Herlihy and Moss, 1993], and the

following proposal of its software-based version (STM) by [Shavit and Touitou, 1995], a few

years passed without much interest in this topic. Soon after the time when the first multicore

processors became commercially available, interest in STM was rekindled and, since then,

this has been an area of growing research interest, leading to several proposals for STM

implementations, each with their own set of characteristics [Herlihy et al., 2003b; Harris and

Fraser, 2003; Marathe et al., 2004; Harris et al., 2005; Dice et al., 2006; Spear et al., 2008;

Felber et al., 2008b; Dalessandro et al., 2010].

STM is a concurrency control mechanism for concurrent programming. It supports the

generic notion of an atomic block of code that can perform shared memory accesses with

transactional guarantees. The concept of STM transactions shares some resemblance with

that of database transactions, but has specific characteristics that make its implementations

differ from those of database transactions [Felber et al., 2008a]. Both types of transactions

2http://db-engines.com/en/ranking_categories
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focus on controlling access to shared data and providing an all-or-nothing semantics for the

actions within the transaction. However, because STM transactions operate over transient

data, they do not need to be concerned with aspects related to external data storage, nor

provide guarantees of data survival or state recovery in case of a system crash. Instead, STM

puts a strong emphasis on aspects related to program safety and liveness. To a large extent,

theoretical developments on STM have focused on the correctness criteria and progress con-

ditions that are ensured to the application code when using this concurrency mechanism.

In the following, I summarize those concepts which are relevant to the work that will be

described ahead.

2.2.1 Correctness Criteria

From the perspective of the user of STM, transactions must appear to execute atomically

at a single indivisible point in time. For this reason, a correct execution will be one in

which, although several transactions may progress concurrently, their outcome must be

equivalent to one where they executed sequentially, one at a time. This is represented in the

concept of serializability [Papadimitriou, 1979], which originates from database transactions.

It states that any set (or history) of transactions is serializable if the execution of all committed

transactions in the set can be explained by some sequential ordering of those transactions.

A stronger requirement over serializability is strict serializability [Papadimitriou, 1979],

which additionally imposes that the sequential order that explains the outcome of a history

of transactions must preserve the order of temporally nonoverlapping transactions, that is,

if a transaction T1 is seen to commit before another T2 starts, then the effects of T1 must

necessarily be seen by T2, because T2 cannot be reordered before T1 to justify a strictly

serializable execution.

The two criteria above leave open the possibility for transactions that do not commit, such

as those that abort or enter infinite loops, to see inconsistencies. To tackle this situation the

criterion of opacity [Guerraoui and Kapalka, 2008] additionally imposes that all transactions

access consistent data, regardless of their outcome.

These three criteria are useful to discuss the correctness of a set of operations, in this

case, a set of transactions. When dealing with the individual execution of a concurrent

operation, such as the commit of a transaction, the concept of linearizability [Herlihy and

Wing, 1990] comes into play. Linearizability is akin to strict serializability, except that it is
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a criterion that characterizes the execution safety of operations in a concurrent object. A

linearizable operation is one that appears to take effect instantaneously at some moment

between its invocation and response. Linearizability is an important and desirable property,

because it is compositional and nonblocking [Herlihy and Wing, 1990]. The point where the

effects of a linearizable operation become visible to others is called the linearization point. For

lock-based operations, the linearization point typically occurs within the critical section. For

operations that do not use locking, the linearization point must be such that it is seen by

others as an indivisible operation.

2.2.2 Progress Conditions

A system that only handles sequential executions is free to progress at will, apart from any

bugs or purposeful halting. Concurrent executions, however, may get in each other’s way

and, consequently, limit each other’s progress. Progress conditions state how each thread or

the system as a whole behaves under concurrent executions.

Progress guarantees can be either blocking, in which the delay of any one thread can

prevent others from continuing, or nonblocking, in which a thread’s execution may not be

prevented by others [Herlihy and Shavit, 2008].

A nonblocking algorithm can be characterized as wait-free [Herlihy, 1991] if it ensures

that every thread will be able to execute its tasks in a finite number of steps, regardless

of what other threads may be doing. It is bounded wait-free if it is possible to establish a

bound on the number of steps required to complete the algorithm. Wait-free (and conse-

quently bounded wait-free) algorithms can never be prevented from completing, hence they

are starvation-free. If individual thread progress cannot be guaranteed, but still the algorithm

is nonblocking, and there is at least one thread that is always able to make progress, then the

algorithm is said to be lock-free [Dongol, 2006]. This type of algorithm allows for individual

threads to suffer from starvation, but not all threads at the same time. Lock-freedom is a

weaker property than wait-freedom, but in practice lock-free algorithms tend to be much

more efficient and, in general, all threads will eventually make progress, under the typical

scheduling algorithms of common operating systems [Fraser, 2004].

Another nonblocking progress condition is obstruction-freedom [Herlihy et al., 2003a],

which guarantees that any one thread will make progress if it executes in isolation for suf-

ficient time. This progress condition is even weaker than lock-freedom, because it does not
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guarantee that any progress is ever made when multiple threads execute concurrently. In

contrast to wait-freedom and lock-freedom, obstruction-freedom is a dependent progress

condition [Herlihy and Shavit, 2011], because progress of the system relies on guarantees

provided by the underlying platform. Even though the upside of obstruction-freedom is that

it allows for the most efficient implementations of all three nonblocking progress conditions,

its usefulness has been questioned [Ennals, 2006; Dice and Shavit, 2007] mainly based on

the argument that, within the set of dependent progress conditions, this is the least efficient

type of implementation.

The other dependent progress conditions are both blocking: Starvation-freedom guar-

antees that every thread that attempts to access a shared resource will eventually be able

to do so, and deadlock-freedom guarantees that at least some thread will be able to make

progress, even if all others starve. These two progress conditions are akin to wait-freedom

and lock-freedom, respectively, except in that a thread accessing the shared resource may

prevent all other threads from executing, causing them to block.

2.3 Problem Statement

In Section 2.1, I have described how the evolution in the development of enterprise appli-

cations has led to a state where providing strong transactional semantics is possible, but

expensive, so much so that in order to have acceptable performance, transactional systems

sacrifice consistency. Additionally, I argue that part of the performance penalty stems from

the legacy use of DBMS both as data repositories and, ultimately, as transaction providers

for the applications’ business logic, leading to many costly interactions between the two

components.

The problem, from a software development perspective, is that programmers

are burdened with additional coding effort, which is required to solve the

possible data inconsistencies that may arise from lacking transactional se-

mantics.

In this dissertation, I concentrate my attention on the development of complex enterprise

applications that require transactional support and data persistence. By complex, I mean

applications that have a rich domain structure with many relationships among the various

domain entities, as well as business logic with nontrivial rules. Moreover, I assume that
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these applications have many more read-only than write business transactions, typically in

the rate of 10 to 1 or higher. In summary, the common characteristics that describe the

class of applications on which I concentrate are the following:

• Operations can execute concurrently.

• Business logic is implemented with transactions.

• Application state is stored in some data repository—a DBMS.

• Business logic is complex, i.e. transactions are not simple CRUD3 operations.

• The workloads contain many more reads than writes, typically in a ratio of 10 to 1 or

higher.

For applications that fit the above characteristics, which I generically name enterprise

applications, I identify two difficulties that derive from current implementations of the typical

multi-tiered architecture: One is the difficulty in ensuring consistency; the other is the

reduced performance of the application server in the processing of complex operations due to

its dependence on data from a separate component—the DBMS—even when using common

techniques such as data caching. The following two subsections provide further discussion

on each of these difficulties.

2.3.1 Consistency Problems

If given the possibility, and all else being equal, it stands to reason that every programmer

would like to have no less than the strong consistency guarantee of strictly serializable

transactions, when programming concurrent transactional operations that manipulate the

shared state of the entities in their code. Having such guarantee shields programmers from

concurrency hazards, and allows them to write cleaner and simpler code. For example, the

authors of Google F1 [Shute et al., 2013] clearly state the importance of consistency as a

requirement for their system:

The system must provide ACID transactions, and must always present appli-

cations with consistent and correct data. Designing applications to cope with

concurrency anomalies in their data is very error-prone, time-consuming, and

ultimately not worth the performance gains.
3Create, Read, Update, Delete.
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Figure 2.1: Two players occupying nonadjacent positions on a map.

To illustrate this point consider the following example: Imagine a multi-player game

where players can concurrently move their pieces in a map from one point to another. The

only restriction is that, after each movement is performed, no player can be in the immediate

vicinity of another player. Now consider the starting scenario depicted in Figure 2.1, which

shows part of the map containing two players, P1 and P2.

Suppose that, concurrently, P1 attempts to move one position to the right and P2 attempts

to move one position to the left. Only one of the moves can succeed, because otherwise the

two players would end in a position next to each other, which is illegal. In Listing 2.1 on

page 18, I present a possible implementation of the moveTo(int, int) operation: The

operation checks that both the target position and its surroundings are available and, if that

is the case, it updates the position of the player on the map.

This code looks quite trivial and, when several moves are executed concurrently, each

within its own transaction, the programmer should expect the application to work just fine—

that is, after each transaction finishes, the moved player should be in a location that does

not contain any adjoining players, thus maintaining the domain consistent. Sadly, this may

not be the case if transactions are executed with the isolation level provided by most of

today’s mainstream transactional systems, which ensure snapshot isolation, at best. Under

snapshot isolation a transaction may commit even if the values that were read changed in

the meanwhile, as long as concurrent writes do not intersect. In this example, if transaction

T1 executes P1.move(2,2) and transaction T2 executes P2.move(3,2), then Table 2.1 on

page 18 presents the points in the read set and write set of each transaction with regard to

map coordinates.

Note that write sets do not intersect, and as such, under snapshot isolation both trans-

actions will be allowed to commit, leading to an inconsistent domain state. This problem is

well known by the name of write skew [Fekete et al., 2004]. Yet, with the given transactional

semantics, the current solution is to put on the programmer’s shoulders the responsibility
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1 class Player {
2 ...
3 void moveTo(int x, int y) {
4 if (cell(x,y).available(this) &&
5 cell(x+1,y).available(this) &&
6 cell(x-1,y).available(this) &&
7 cell(x,y+1).available(this) &&
8 cell(x,y-1).available(this)) {
9 this.currentCell().clear();

10 cell(x,y).set(this);
11 } else {
12 throw new Exception("Move not allowed");
13 }
14 }
15 }
16

17 class Cell {
18 ...
19 boolean available(Player p) {
20 return this.isEmpty() || this.holdsPlayer(p);
21 }
22 }

Listing 2.1: Possible implementation of the moveTo(int, int) operation. The
programmer checks the surroundings to ensure that the move is allowed and then
writes to the destination.

Tx Read set Write set

T1 (2,2), (3,2), (1,2), (2,3), (2,1) (1,2), (2,2)

T2 (3,2), (4,2), (2,2), (3,3), (3,1) (4,2), (3,2)

Table 2.1: Read and write sets for concurrent transactions T1 and T2 with regard to
map coordinates. T1 and T2 write to adjacent places and their respective write sets
do not intersect.
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of forcefully creating a conflict between the two transactions. In this case, one way of pro-

grammatically forcing the conflict is to call clear() for each of the positions surrounding

the destination, thus causing an intersection in the write sets [Cahill et al., 2009]. This is

definitely something undesirable from the programmer’s perspective, and very much error-

prone in complex applications where the potential conflicts might not be easily identified, as

they may occur due to the interaction of many functionalities.

2.3.2 Performance Problems

So, why do not current transactional implementations change to support stronger consis-

tency, such as strict serializability? Possibly, because of the generalized idea that providing

strong consistency necessarily imposes unacceptable performance penalties. In fact, such

may be true for today’s standard architectures, which ultimately rely on the DBMS for trans-

actional support.

When applications had simple domain models, it was common for programmers to imple-

ment a complex database query to return exactly the results sought. Generally, this meant

that very few database round trips—often just one—were enough to process each unit of

work requested by the client. Most of the business logic computation was embedded on the

database query and handled by the DBMS. For an application with a typical 3-tier archi-

tecture, where the communication latency between the client and the server is measured

in hundreds of milliseconds and the communication latency between the application server

and the database takes fewer than 10ms, the time spent with the database query is almost

negligible from the client’s perspective.

Today, however, programmers can execute complex computations that require access to

much data within a single transaction. The use of higher-level programming languages, such

as OOP, facilitates and promotes data navigation instead of the creation of custom queries.

This type of programming greatly increases the number of database round trips required

to answer to a client’s request, with negative influence on performance. If instead of one

database round trip, the business transaction has to perform tens to hundreds of round

trips in sequence, then the accumulated latency of all of those round trips will largely exceed

the typical latency between the client and the server.

The trend towards using key-value data stores represents another factor driving the ten-

dency towards the execution of multiple round trips per transaction. These types of DBMS
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have no explicit data schema, which limits their ability to handle complex data queries. As a

result, complex queries, once handled by the DBMS, are now performed by the application

server, using multiple data requests in the same transaction.

Trying to reduce the number of round trips, dedicated middleware, such as ORMs, may

cache data on the application server, but still they depend on the underlying database to

provide the transactional semantics. Unfortunately, developers of such tools have followed

suit with databases in terms of the transactional properties provided to the application pro-

grammer. In fact, the use of application tier caches may further weaken the consistency

semantics of the database by inadvertently providing inconsistent reads (served from the

cache) within a transaction, as discussed in Perez-Sorrosal et al. [2007].

Another way of reducing the cost of data access per request is to use an IMDG embedded

in the application server, which has the potential of converting all remote calls—especially

those related to reads—into local method calls only. In spite of reducing the cost of data

access per request, the complexity of these data stores still leads to deep method call stacks,

which affects the read performance. The performance of these calls can be greatly improved,

as I will show with the experimental results in Chapter 3 and Chapter 5.

2.4 Proposed Solution

In spite of the common trend that sacrifices consistency to attain good performance, there

are others who defend the importance of strong consistency [Corbett et al., 2012], and some

even show that it can be achieved while attaining good performance [Shute et al., 2013].

Although, for the general case, consistency and performance may be two conflicting forces,

I believe that, for a class of applications, it is possible to improve both—consistency and

performance—by taking into account the following:

• The typical workloads in enterprise applications are mostly read dominated and display

a very low rate of conflicts within write transactions.

• Advancements in STM technology provide in-memory transactions with exceedingly

good performance, especially for read operations.

• Advancements in hardware technology provide affordable computers with large

amounts of main memory, often capable of holding entire databases in main mem-

ory, and many CPU cores to deal with highly concurrent workloads.
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• Communication with a DBMS tends to be several orders of magnitude slower than

communication between the processor and main memory within a single computer.4

• There are many small- to medium-scale applications, whose typical workloads can be

handled by a single powerful computer.

The solution that I propose leverages on the observations above. I propose to decouple

transaction support from the DBMS and to place it in a dedicated component embedded into

the application. This places the transaction control as close as possible to the location where

business logic operates over shared data: The entire transactional context shares the memory

with the application state. This shift reduces the cost of informing the transactional system of

the operations performed, which should make the transaction’s bookkeeping cheaper. Most

importantly, it facilitates the preservation of a transaction’s read set, which is required to

uphold strong consistency.

The most important requirement of my solution is to have a transactional system that

provides strong consistency. STMs are a natural fit for this purpose: They have been devel-

oped specifically to support in-memory transaction management, and they provide stronger

transactional guarantees than the typical transactional system used in an enterprise appli-

cation. Also, one of the core responsibilities of an STM is to intercept accesses to shared

memory, which means that STM implementations tend to be concerned with providing fast

memory accesses.

So, I propose to use an STM to provide transactional support directly at the application

server. However, because STM works in-memory only, I will have to extend it to deal with the

requirements of enterprise applications, namely to support interaction with a data storage

component, and to support application clustering for cluster-wide consistent transactions.5

At first glance, the shift of transactional control from the DBMS to the application server

can appear like a radical approach that would break with traditional enterprise application

development. However, although the internal implementation of transactions in STM may

differ considerably from that of transactions in a DBMS [Felber et al., 2008a], the transac-

tional API for STM resembles that of any other transactional system (in its most fundamental
4This is less of a problem for embedded IMDG, but still, the greater complexity of the call stack makes it far

more expensive than a simple memory access.
5Notice that, even though in this dissertation I will describe mechanisms to support the distributed coordina-

tion of an STM instance in each node, I dedicate my attention to the algorithmic aspects of the STM’s operations.
I assume a reliable underlying communication network and I do not delve into the complexities of distributed
systems with regards to properties such as reliability and availability. Those are different concerns typically
addressed within the scope of research on Distributed STM.
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form it provides the operations to begin, commit, and rollback a transaction), so that the

replacement should be seamless for the applications relying on the typical transactional API.

A transparent integration of this solution with the current practice in application devel-

opment is important, so that adoption into existing applications is easy, and that it does not

disrupt the typical process of developing a new application: This solution should appear as

an evolution rather than a revolution to the application developers.

Moreover, the feasibility of the solution that I propose to implement emerges from previ-

ous positive results obtained from the application of STM to the development of enterprise

applications. Next, I present some results underlying the motivation for the work developed

in this dissertation. These results sustain the idea that STM can be used in practice for

real-world enterprise applications providing for strong consistency and good performance,

and that such applications exhibit read-dominated workloads with a low conflict rate.

2.4.1 STM in Real-World Applications

This section presents statistical data about the workload patterns of two real-world enterprise

applications: FénixEDU and •IST.6 These statistical data provide information about the typi-

cal workload of these applications, which have very high read/write ratios and a remarkably

low rate of conflicts. These results were collected over an extended period of several years,

with varying usage patterns, and they motivate the work in this dissertation for at least

two reasons. First, they provide support to the common belief (but rarely confirmed with

real data) that enterprise applications have a very high read/write ratio: In both cases, the

number of write transactions are, on average, only 2% of the total number of transactions,

peaking below 10% for short periods of write-intensive activity. These numbers are, actu-

ally, well below the numbers that are typically simulated by benchmarks such as TPC-W.7

Second, these results show that strict serializability is harmless for (at least some) enterprise

applications: The rate of conflicts among write transactions is almost negligible for these

applications, averaging less than 0.2% of the total number of write transactions—meaning

that they represent less than 0.004% of the total number of transactions.

FénixEDU is a large web application deployed as part of an academic information sys-

tem for Higher Education developed at Instituto Superior Técnico (IST), the largest school of

engineering in Lisbon, Portugal. IST is home to more than 6,000 undergraduate students

6Pronounced as dot IST.
7http://www.tpc.org/tpcw/
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(BSc), 4,000 graduate students (MSc and PhD), and around 1,100 faculty members and re-

searchers. FénixEDU supports the majority of IST’s web-based functionalities for the entire

school ranging from courses and academic management to administrative support, scien-

tific support, and admissions. The functionalities it provides can be as simple as logging a

summary for a class, or as complex as generating and validating timetables for the entire

school.

The development of FénixEDU begun in 2002, following the at-the-time best practices

of software development and engineering: It was based on a traditional web application

architecture. Data was stored in a relational database (MySQL), which provided also for the

transaction support required by the application’s business logic. Following a rapid evolution

of its feature set, with an ever increasing number of users, in late 2003 the application

started to have not only performance problems, but was also facing development problems

due to the complexity of the programing model, which was compounded by the pressure

put on developers to make the application perform better. These problems led to the first

experiments of using an STM-based architecture to develop the application. Since September

2005, the application has been running with the new architecture.

By 2011, the FénixEDU web application contained approximately 1.2 million lines of code,

over 8,000 classes, of which more than 1,200 represent domain entities whose instances are

manipulated transactionally and stored persistently. It had over 3,600 different web pages

for user interaction. Every 5 minutes, FénixEDU logs statistics about its operation. To the

best of my knowledge, FénixEDU was the first and still is, currently, the largest application

to use an STM-based architecture. It is, by far, the STM-supported application for which

there is the most statistical data collected.

Figure 2.2 shows the evolution in the total number of transactions processed per quarter

since the last quarter of 2006. Overall, the number of transactions has been increasing,

which correlates to the continuous increase in the functionalities provided by the system to

its users. The fluctuations occur mostly because the users’ activity is not constant over the

year. For example, during vacation periods, activity drops considerably.

FénixEDU processes a daily average of 1 million transactions during work days. The peak

usage of the system occurs twice a year, when the enrollment period for the following semester

opens, at which time nearly 10,000 students hit the system concurrently. Figure 2.3 shows

one such peak that occurred in February 2011. During the entire day of February 10,

2011, the system processed 3.7 million transactions. However, enrollments only started at
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Figure 2.2: Total number of transactions per quarter in FénixEDU.

6:00 P.M. and in the following 60 minutes the system processed 1.1 million transactions,

which amounts to a peak of more than 300 transactions per second.

Figure 2.4 presents the daily rate of write transactions and conflicts, also for February

2011. Notice that under normal load, over 98% of the total number of transactions processed

by the system are read-only transactions, and of the remaining 2% (the write transactions)

there are on average less than 0.2% restarts due to a conflict. At peak times, the rate of write

transactions goes up, but still remains under 4% and the conflicts rise to about 9% (of the

write transactions).

Note, however, that this throughput is not limited by the hardware, but merely reflects

the demand made to the system by its users. In fact, all this is run on two machines (for

fault-tolerance), each equipped with 2 quad-core CPUs and 32GB of RAM, and they are

underused. Data loaded in memory usually take approximately 6GB, whereas the relational

database size (measured by MySQL) is under 20GB. This shows that it is possible to deploy a

real-world application running under strict serializability semantics without a negative effect

on performance. I believe that these characteristics of the FénixEDU web application are

not uncommon, and that, in fact, are representative of a large fraction of modern enterprise

applications, for which an architecture that shifts transaction control to an STM embedded

with the application server provides a very good fit.
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Figure 2.3: Daily number of transactions in FénixEDU during February 2011.
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Figure 2.4: Daily rate of writes and conflicts in FénixEDU during February 2011.
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Figure 2.5: Total number of transactions per quarter in •IST.

More recently, in mid 2008, IST begun the development of another web application,

named •IST. The goal of this new web application is to support many of IST’s workflow pro-

cesses. It includes the management of several administrative tasks, such as acquisition

processes, travel authorizations, administrative staff evaluation, internal staff transfers, and

document management, among others. It is dedicated to support the work of faculty mem-

bers, researchers, and administrative staff. Because it does not include the students, its

user base is much smaller than FénixEDU’s, but it is used in a more regular fashion by its

users.

Figure 2.5 shows the evolution in the total number of transactions processed per quarter,

since the initial deployment of this application, which has used an STM for transaction sup-

port since the beginning. As statistical data has been collected since the initial deployment

of this application, there has been a steady increase of the application’s usage, since its early

beta stages in the last quarter of 2008, when both few processes were supported and few

users were using the application.

Since then, the application has been opened to its entire user base and has also included

many more features, leading to a significantly higher number of transactions processed in

recent quarters. It is expected that this growth may continue for a while as new features are

added. However, it may eventually reach a plateau, because of the limited number of users.
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Unlike the FénixEDU, the •IST does not have any publicly accessible web pages, other

than the login page. The functionalities it provides tend to increase the number of write

transactions, because many of the operations provided to the users involve the execution of

workflow steps that cause changes to the application state. Figure 2.6 presents the rate of

write transactions and conflicts in this application, and provides some insightful information.

First, it confirms that, as expected, the percentage of write transactions is higher than in

FénixEDU. However, it shows a tendency towards decreasing. In fact, the absolute number

of write transactions per quarter (not shown in the plots) has been increasing, but so has

the number of read-only transactions. And the latter have increased much more. I believe

that this is a natural consequence of having more data available in the system, because more

users access the system to check the status of the workflows in which they take part. So, in

fact there is a very interesting conclusion to draw from this observation, and it reinforces the

belief that, in this kind of applications, the reads largely outnumber the writes: Even when

a web application is more geared towards operations that involve having its users making

changes to the application’s data, as in •IST, their users tend to execute many more of the

read operations. In fact, some evidence suggests that the greater the number of users of

an application, the greater the read/write ratio: In [Bronson et al., 2013] the authors report

read/write ratios of approximately 1,000 to 1 for a system with more than 109 users.

In spite of •IST displaying a higher rate of writes than FénixEDU, the conflicts remain

close to zero. The abnormal spike in the first quarter of 2010 is due to the execution of large

migration scripts that executed scattered throughout the weeks and often conflicted with

users’s activities. Nevertheless, it represents a very low percentage of the write transactions.

Even though performance problems in the FénixEDU application were one of the primary

reasons for developing a new architecture based on STM support, there are no quantitative

measurements of the performance benefits of the new architecture for FénixEDU when com-

paring with the original architecture: There is only anecdotal evidence from its users that

the performance of the application increased significantly once the new architecture was

adopted, even though the load of the system increased steadily over time and the hardware

remained the same. Unfortunately, as in most real-world scenarios, it is overly complex and

expensive to reimplement any of these applications with a traditional architecture, so that

the two alternatives could be compared directly.

In conclusion, the information provided by the statistical data collected in these two

applications, corroborates the following ideas:
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Figure 2.6: Quarterly rate of writes and conflicts in •IST.

• The majority of the workload consists of read-only transactions.8

• Write transactions seldom conflict. This occurs because (1) the load on the system is

such that two write transactions have a low probability of intersecting in time, and (2)

concurrent write operations from different users tend to access different data.

• Enforcing strict serializability for transactions does not affect the perceived performance

of the applications. This is in part due to the low rate of write transactions and also

because the STM in use enables read-only transaction to execute without interference.

• A single modern computer is enough to support the workload of a small- to medium-

sized number of concurrent users, even under conditions where the application is

naturally stressed by its users.

2.5 Summary

In this chapter, I provide the context for my work, I identify a concrete problem, and I

summarize the solution that I propose to implement.

I begin with a historical perspective that focuses on how several factors drove the evo-

8Although not shown in the plots that I presented, there is also evidence that even write transactions are
dominated by reads (cf. [Cachopo, 2007, p. 178]).
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lution in the development of enterprise applications, leading to the present state, in which

developers are burdened with the task of addressing consistency problems that may occur

during the execution of transactional business logic. One of the causes of this problem is

that traditionally consistency has been systematically weakened in favor of performance.

I argue that both performance and consistency can be improved for a class of applications,

by leveraging on recent advancements in both software and hardware, and I propose the

development of a middleware that provides strongly consistent transactions and that runs

embedded in the application code, such that it can improve the performance of the read-

heavy workloads. I back these ideas with the presentation of statistical data, collected from

real-world enterprise applications.

29



Chapter 2 · Context, Problem Statement, and Solution Overview

30



3TMM: A Transactional Memory
Middleware for Enterprise Applications

In this dissertation, I posit that shifting transaction control from its typical location—a

DBMS—to a dedicated STM-based component that is embedded into to the application is

a better alternative (1) to provide strong transactional semantics, and (2) to improve perfor-

mance by reducing the number of calls to the DBMS.

In this chapter I enact my proposal: I describe TMM, an STM-based middleware designed

to provide efficient and strongly consistent transactional support for enterprise applications.

I identify the properties of the main elements that constitute the solution I propose, and

then I provide the detailed algorithms to implement this solution. Afterwards, I present an

experimental evaluation of TMM, and conclude with a discussion on the related work.

3.1 The Repository Abstraction

One of the qualities of TMM is that it should be able to integrate transparently into any

enterprise application, regardless of the underlying DBMS in use. This middleware needs to

intercept and manage the application’s operations that involve transaction control and data

access, which, I assume, are operations supported ultimately by the DBMS.

To be able to design a solution that remains independent of any concrete DBMS, I in-

troduce the Repository interface, which is an abstraction that represents the minimum set

of operations that the DBMS must support: Such interface provides methods to store and

retrieve data based on their identity, and it provides the basic operations for transaction

management. The specification of this interface, however, should not be seen as a restriction

to the type of enterprise applications to which TMM is applicable. The design principles of

TMM are applicable regardless of the specific API used to communicate with the DBMS.9

9The applicability of TMM’s design to other Repository interfaces is not mere speculation. In fact, there
are already alternative implementations in the Fénix Framework (cf. http://fenix-framework.github.
io/) that, e.g., operate with a relational database interface, and provide to the programmer higher-level data
manipulation operations.
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1 interface Repository {
2 /* Get the object value for the given key.
3 Return null if key is nonexistent. */
4 Object get(Object key);
5 /* Store the object value, associated with the given key.
6 Overwrite previous value, if it exists. */
7 void put(Object key, Object value);
8

9 /* Begin a new transaction or throw an exception if already
10 within a transaction. */
11 void beginTransaction();
12 /* Commit the current transaction. If commit fails, the caller
13 is responsible for invoking rollbackTransaction(). */
14 void commitTransaction();
15 /* Abort the current transaction and restore program state. */
16 void rollbackTransaction();
17 }

Listing 3.1: The Repository API. It represents the minimum set of operations
that a TDR should provide.

For the purpose of presenting this dissertation, I shall assume that the set of operations

shown in Listing 3.1 includes all the operations used by an enterprise application when inter-

acting with the DBMS. In reality, the concrete interface provided by any specific DBMS will

probably be slightly different and, inclusively, it may expose additional DBMS-specific func-

tionality. Nevertheless, the API that I require is arguably a subset of the API that every DBMS

should be able to provide: The put(Object) and get(Object, Object) operations rep-

resent the typical store and retrieve operations for a datum, and, regarding transactions, I

only assume DBMS support for starting (beginTransaction()) and ending a transaction

(commitTransaction() or rollbackTransaction()). In case a concrete application

uses additional functionality, such could be decomposed into calls to the Repository API

that I assume.

I use the term Repository when referring to the interface, and the term Transactional

Data Repository (TDR) when referring to any DBMS that can provide functionality equivalent

to the one described by the Repository interface. So, an application executes business

transactions and manipulates shared data using the Repository interface, which some

TDR then implements.
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3.2 Overview of the Solution

The solution that I propose, relies on the following elements:

• STM. The STM runs embedded into the application, and, out-of-the-box, it provides

node-local, in-memory transactions with strong consistency. It will be extended to

support transactions over data that is stored externally, in the TDR.

• STM-backed cache. The purpose of this cache is to reduce the number of calls required

to obtain data from the TDR.

• STM synchronization protocol. This protocol ensures that each of the node-local

transactions becomes globally serialized when running multiple STM instances (one

per application server).

The core idea is to shift the responsibility for transactional control: It is removed from

the TDR and it is embedded into the application. To this effect, I use an STM to provide

in-memory transactional support directly within the application server tier. Considering the

ACID properties for the transactions that an application executes, the Atomicity, the Con-

sistency, and the Isolation are supported by the STM, whereas the Durability, if provided,

is still left as a responsibility of the TDR—I make no additional effort to ensure it, nor do I

prevent it. Notice that, whether durability is provided, it will depend solely on the concrete

TDR supporting it. The design that I propose applies to different types of TDRs. Some, such

as IMDGs, may not always provide such guarantee.

The concrete STM that I use is the JVSTM: It has been used already in the development

of enterprise applications with good performance results [Fernandes and Cachopo, 2011b],

and it is one of the STMs that provides the strongest consistency: opacity.

I shall describe the complete middleware in three steps. In the first step, I describe

how to integrate the JVSTM into the application to provide strong transactional consistency.

I achieve this, simply by exchanging the application’s existing Repository implementation

with a JVSTM-based implementation that routes through the JVSTM the operations that the

application invokes on the Repository. In turn, this new implementation will have full control

of when it chooses to invoke any operation on the original Repository.

The JVSTM, however, is designed to manage in-memory–only transactions: Conse-

quently, state is lost when the application terminates, unless there is some mechanism

33



Chapter 3 · TMM: A Transactional Memory Middleware for Enterprise Applications

in place to manage the storage of the memory contents to a TDR.

In the second step, to address the need for storing data externally, I introduce a mech-

anism by which data managed by the JVSTM are automatically stored to a TDR at commit

time and loaded back into main memory whenever they are required. This mechanism trans-

parently (to the application) maps between the in-memory data that is managed by the STM

and the data stored in the TDR. The loading operation leverages on the fact that data is being

managed by the STM (therefore, transactionally safe) to keep only a single copy of the same

data in memory, thereby reducing the memory footprint of the application, when compared to

middleware that ensures isolation by providing each transaction with a different copy of the

data. In applications with complex business transactions that manipulate much data (such

as an object-oriented application traversing a large object graph), the number of accesses to

a TDR to fetch and store data can increase significantly. Without some form of caching, this

high number of accesses to the data in the repository can greatly reduce overall application

throughput, by largely increasing the latency of each transaction. To tackle this problem,

I add an STM-aware cache of the TDR’s data. This cache indexes the application data and

maintains them accessible in memory for as long as possible, thereby avoiding costly calls to

the TDR. Ultimately, given enough main memory, each datum is fetched only once, and the

TDR will be accessed only to store new values written.

Finally, in a third step, I extend the STM with a synchronization protocol, which extends

the previous approach so that it may be used in a distributed system. This protocol allows

for the node-local transactions to become globally serialized. The underlying idea is that,

when write transactions commit, they atomically write the data to the TDR and, also, they

invalidate the written entries in other remote caches. This way, if a subsequent transaction,

in another node, requests absent or invalidated data, it simply (re)loads it from the TDR.

The end result from the combination of these three steps is an STM-based middleware

that can provide durable transactions and that guarantees cluster-wide strongly consistent

transaction semantics. In addition, the experimental evaluation in Section 3.8 on page 77,

shows that TMM is able to improve performance of typical read-dominated workloads.

Next, I introduce the JVSTM, and then describe each of the additions that I make on

top of it, ending with a discussion of the consistency guarantees provided by TMM. The fully

working implementation of all algorithms described in this chapter is performed within the

Fénix Framework, and it is available at https://github.com/smmf/fenix-framework

from commit with SHA-1 checksum 657ebe3ea2367368442322734ee56c7c046e9222.
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In this chapter, the solution that I propose values correctness and simplicity over per-

formance. The design leverages on the original lock-based commit algorithm of the JVSTM

and extends it as necessary. For this reason, the solution for clustering that I propose still

uses an exclusive lock during the commit of write transactions. The immediate consequence

is that, at any given moment, only one transaction can be executing a commit across the

cluster. Although, as will be made clear with the experimental results, such solution greatly

improves application performance on a single node, it does not scale well as the number of

nodes in the cluster increases or the rate of write transactions increases. In the following

chapters, I will revisit this issue with the aim to improve scalability, and provide an alterna-

tive solution, which does not depend on the use of locks, and enables commits to proceed in

parallel.

3.3 A JVSTM Primer

The JVSTM10 is a Java library that implements a word-based, multi-version STM that en-

sures strict serializability for all of its committed transactions. Actually, the JVSTM provides

the even stronger correctness guarantee of opacity, which ensures additionally that even

uncommitted transactions always see a consistent state of the data. The JVSTM operates

only on a single Java Virtual Machine (JVM)—it does not support distributed transactions.

The JVSTM implements transactional memory locations [Harris and Fraser, 2003] us-

ing Versioned Boxes [Cachopo and Rito-Silva, 2006]. Each Versioned Box (VBox) holds a

sequence of entries (VBoxBody—body for short), each containing a value, the corresponding

version, and a reference to the previous body. Each entry in the sequence corresponds to a

write made to the VBox by a successfully committed transaction. When such write trans-

action commits, it advances a shared version clock and uses the new clock value to tag

each of the new bodies created by the commit. JVSTM’s commit algorithm always maintains

the sequence of bodies per box ordered, with the most recent committed value immediately

accessible at the head.

Figure 3.1 on page 36 shows an example of a VBox for an integer that models a counter.

In this example the counter was created (with the initial value 0) in the transaction that

committed version 4. It was then incremented by the transactions that committed versions 8

and 13. From the programmer’s perspective there is a single memory location of the type

10http://inesc-id-esw.github.io/jvstm/
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VBox

body: version: 13

value: 2

previous:

version: 8

value: 1

previous:

version: 4

value: 0

previous: null

Figure 3.1: A transactional counter and its versions. From the programmer’s per-
spective, the VBox is a transactional memory location that holds only one value at
any given time.

VBox<Integer> that can be accessed via get() and put(...) methods.

A transaction reads values in a version that corresponds to the most recent version that

existed when the transaction began. Thus, reads are always consistent and read-only trans-

actions never conflict with any other transaction, being serialized at the instant they begin,

as if they had executed atomically at that instant. Conversely, write-only transactions are

serialized at commit time (when the changes are made visible atomically) and they never

conflict as well. Read-write transactions (write transactions for short), on the other hand,

may conflict with other transactions that write, and they require validation at commit time

to ensure that the values read during the transaction are still consistent: A write transaction

is valid to commit if the values it read have not been changed in the meanwhile by another

concurrent transaction. One of the distinctive features of the JVSTM is that read-only trans-

actions have very low overheads and they are lock-free. In fact, apart from the creation of a

new transaction instance, read-only transactions run entirely wait-free.

The JVSTM follows a redo log model for STMs [Harris et al., 2010]: During a transaction,

the JVSTM records each VBox access (either a read or a write) in the transaction’s local log

(in the read set or in the write set, respectively). At commit time, if the transaction’s read

set is valid, then its write set is written back: Each value in the write set is stored in a new

body that is added to the corresponding VBox, thus producing a new version for each of the

memory locations that changed, which will then be available to other transactions that begin

afterwards; aborting a transaction, on the other hand, does not require any additional work.

The pseudocode in Listing 3.2 on page 37 summarizes the commit algorithm of write

transactions (the commit of read-only transactions simply returns). The commit lock provides

mutual exclusion among all committing write transactions, which ensures atomicity between

validating the read set (line 6) and writing back the write set (line 8). Also, the version number

is provided by a unique value obtained from a shared counter (line 7) that changes only inside
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1 class Transaction {
2 ...
3 void commit() {
4 COMMIT_LOCK.lock();
5 try {
6 validate(); // throws a CommitException if not valid
7 int newTxnumber = getVersionClock() + 1;
8 writeBack(newTxNumber);
9 setVersionClock(newTxNumber);

10 } finally {
11 COMMIT_LOCK.unlock();
12 }
13 }
14 }

Listing 3.2: The commit algorithm that uses a single commit lock.

the critical region (line 9). The commit operation sets a linearization point when it updates

the value of the shared counter. After that point, the changes made by the transaction are

visible to other transactions that start. When a new transaction starts, it reads the version

in the shared counter to know which version it will use to read values.

In the JVSTM, the read operation from a transactional location is usually very fast, for

the following reasons:

• No synchronization mechanism is required to read from a VBox. The only (lock-free)

synchronization point, for the entire transaction, occurs at the start of the transaction,

when it reads the most recent committed version number.

• The list of versions is always ordered by decreasing version number. The commit

operation keeps the list ordered, because it always writes to the head of the list a

version number that is higher than the previous head version.

• The required version tends to be at the head of the list, or very near to it. If it is

not at the head, then it is because after this transaction started, another transaction

has already committed and written a new value to that same location (recall that a

transaction always starts in the most recent version available at the time).
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3.3.1 Garbage Collecting Unused Versions

To keep the list of bodies in each VBox from growing indefinitely, bodies are kept only for as

long as any transaction may require them. The JVSTM ensures forward progress—that is,

new transactions always start from the most recent version committed. As older transactions

finish (in either a commit or an abort), older versions may become unused, because they

become logically inaccessible, and can be removed, when no longer needed. When a write

transaction commits, all values that it writes logically replace the older values, from the point

of view of transactions that start henceforth. Thus, these older values can be removed when

there are no transactions running in a version that may still need such values.

To identify which versions are no longer accessible and to support for GC of old versions,

the JVSTM uses the Active Transactions Record (ATR) list [Cachopo, 2007]. This structure is

a singly-linked list of records, where each record holds a reference to the next more recent

record. Each record keeps information about a write transaction that already committed,

namely the commit version and its write set. The latter is kept as a list of references to the

bodies created during the commit. The shared version clock is actually implemented using

the ATR list: The method getVersionClock() (in Listing 3.2 on page 37) reads a shared

reference LAST_COMMITTED_RECORD that always points to the most recent record com-

mitted, and returns its version number; similarly, the method setVersionClock(int)

creates a new record with the appropriate commit version, adds it to the end of the list, and

updates the LAST_COMMITTED_RECORD.

A record also has a counter of how many running transactions are using that record’s

version to read values. When a new transaction starts, it atomically increments the counter

on the most recent record. When a transaction finishes, it decrements the same counter and

checks if it has reached zero. A record is considered active if the counter is positive or if there

is an older record that is active.

When a record becomes inactive, versions produced by newer records make older versions

inaccessible. At this point, older versions are removed by setting the field previous in each

body of the newer record to null. This process is dubbed cleaning the record. Notice that

a version v1 is never lost, unless there is a transaction that writes a newer version v2 to the

same VBox.

Figure 3.2 on page 39 provides an example scenario in which there are three active

records representing the commits of versions 9, 10, and 11. There are also three transactional
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LAST_COMMITTED_RECORD:

tx: 9
write-set:
running: 1
next:

tx: 10
write-set:
running: 0
next:

tx: 11
write-set:
running: 3
next: null

B1
body: version: 10

value: ...
previous:

B3
body: version: 11

value: ...
previous:

B2
body:

version: 8
value: ...
previous: null

version: 10
value: ...
previous:

version: 3
value: ...
previous: null

version: 10
value: ...
previous:

version: 9
value: ...
previous: null

Figure 3.2: An example snapshot of the Active Transactions Record.

locations managed by VBoxes B1, B2, and B3. By looking at each write set, it is possible to

know that the transaction that committed version 9 wrote to B2, transaction 10 wrote to all

three locations, and transaction 11 (the most recent write transaction to commit) wrote to B3.

The shared reference for the LAST_COMMITTED_RECORD shows that version 11 is the most

recent. Currently, there are four running transactions: One that started in version 9, and

three that started in version 11. In the present state, when the only transaction running in

version 9 finishes, it will decrement the running counter to zero. After this occurs, record

9 is identified as inactive, and record 10 is cleaned. This is accomplished by setting to

null the previous field in all bodies written with version number 10. Now, record 10 also

is identified as inactive and record 11 is cleaned. After both old records are cleaned, the

objects shown in gray can be garbage collected by the JVM.

3.4 Integration of the JVSTM in an Enterprise Application

By definition, I assume that an enterprise application uses the interface shown in Listing 3.1

on page 32 to interact with the TDR. As I previously mentioned, the integration of the STM

is transparent to the application: This is achieved simply by replacing the implementation

of the Repository with an STM-based alternative that intercepts the interactions between

the application and the TDR.
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1 abstract class AbstractRepository implements Repository {
2

3 // The concrete underlying repository
4 Repository tdr;
5

6 AbstractRepository(Repository tdr) {
7 this.tdr = tdr;
8 }
9

10 Repository getTDR() {
11 return this.tdr;
12 }
13

14 abstract VBox vBoxFromKey(Object vboxId);
15

16 Object get(Object key) {
17 return vBoxFromKey(key).get();
18 }
19

20 void put(Object key, Object value) {
21 vBoxFromKey(key).put(value);
22 }
23

24 void beginTransaction() {
25 jvstm.Transaction.begin();
26 }
27

28 void commitTransaction() {
29 jvstm.Transaction.commit();
30 }
31

32 void rollbackTransaction() {
33 jvstm.Transaction.abort();
34 }
35 }

Listing 3.3: The JVSTM-based AbstractRepository implementation. It deco-
rates a concrete TDR’s Repository implementation by intercepting the invocations
and using the JVSTM to implement them.
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In Listing 3.3 on page 40, I present an implementation of an AbstractRepository

that decorates a concrete Repository and keeps a reference to it (line 4). The

implementation of the operations that control transactions (beginTransaction(),

commitTransaction(), and rollbackTransaction()) is completely supported by the

use of the JVSTM’s transactions API. The implementation of the methods get(Object) and

put(Object, Object) first obtains the corresponding VBox that wraps the application

data (using vBoxFromKey(Object)), and then executes the requested operation directly

on the VBox.

By using the JVSTM, it is already possible to provide a complete implementation for the

AbstractRepository, albeit limited to applications that run only on a single JVM, and

restricted to transient state. In Listing 3.4 on page 42, I present an implementation of the

method vBoxFromKey(Object) that supports such use case. The implementation hides

the (in)existence of a real TDR by keeping a table of all transactional memory locations ac-

cessed by the application. Notice that concurrent accesses to the same key obtain the values

from the same VBox: The method vBoxFromKey(Object) is responsible for ensuring that

it always returns the same instance of VBox for the same key.

This implementation demonstrates that it is possible to integrate the JVSTM in the en-

terprise application just by replacing the implementation of the operations that interact with

the TDR and, by doing so, to upgrade the semantics of the application’s transactions, so that

they execute under strong consistency. However, because the get/set operations of the

TransientStateRepository implementation operate over data that is kept in local mem-

ory only, it is possible to use this implementation to develop only a transient-state version of

an enterprise application—that is, state is lost when the application terminates. To be able to

interact with the TDR, I must first introduce some additional elements to the infrastructure.

3.5 Extension for Persistent Data

Considering the previous integration of the JVSTM in the application, it becomes necessary

to persist changes to the underlying TDR. This operation is performed atomically during the

commit of a valid transaction. Conversely, when the application starts, it may need to read

existing state from the TDR, so there must also be a mechanism by which data are fetched

into main memory. In the general case, during the execution of the application, not all data

that are ever accessed are guaranteed to fit in memory, so the infrastructure must support
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1 class TransientStateRepository extends AbstractRepository {
2

3 TransientStateRepository() {
4 super(null);
5 }
6

7 private static final ConcurrentHashMap<Object, VBox> repository =
8 new ConcurrentHashMap<Object, VBox>();
9

10 @Override
11 VBox vBoxFromKey(Object vboxId) {
12 VBox vbox = repository.get(vboxId);
13 if (vbox == null) {
14 vbox = new VBox();
15 VBox vboxExists = repository.putIfAbsent(vboxId, vbox);
16 if (vboxExists != null) {
17 vbox = vboxExists;
18 }
19 }
20 return vbox;
21 }
22 }

Listing 3.4: TransientStateRepository is a Repository implementation
that does not use a concrete TDR. It keeps only an in-memory Map of every trans-
actional memory location used by the application, without storing them to a TDR.
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the loading and offloading of data between main memory and the secondary storage provided

by the TDR. This mechanism must also ensure that it preserves the transactional semantics

in case of a sudden application crash.

One of the goals of the architecture I propose is to avoid repetitive calls to read data from

the TDR. I achieve this by keeping data accessible in memory for as long as possible in a

transactionally safe cache, and resorting to interaction with the TDR only when either absent

values are requested or changes are committed.

In this section, I first describe the mapping between the in-memory transactional data

and their representation in the TDR. Then, I present the changes to the JVSTM’s commit

algorithm to include the writing of data to the TDR. Next, I show how VBoxes are maintained

in main memory, in a way that ensures their referential uniqueness, thus sharing them

among concurrent transactions. Finally, I describe what happens when the application

writes data for new keys (requiring the allocation of new VBoxes) or attempts to get values

for keys that are not in main memory yet (requiring the reload of VBoxBodies from the TDR).

3.5.1 Data Mapping

Whenever application data are stored externally, such as in a TDR, there must be a mech-

anism through which the application can reference its data for later retrieval. From the

perspective of an application using a TDR, the identification of its data corresponds to the

key argument used in the get and put operations defined by the Repository interface.

The JVSTM uses VBoxes to wrap the data manipulated by the application, and from the

perspective of the JVSTM, the object reference to the VBox itself is the actual identifier of

the memory location being managed. To link the two identification mechanisms, I extend

the VBox with an attribute (vboxId) to hold the key used by the application to identify the

memory location that the VBox wraps.

Whereas the application is only concerned with a single value for each key, the JVSTM

actually needs to be able to store multiple values for the same key: Each value written to the

same key is kept in a unique VBoxBody that is created by the commit of the transaction that

changed the memory location identified by the given key. So, this requires a mechanism to

uniquely identify the values contained in the bodies and map between their representation

in memory and their representation in the TDR. Recall that each body contains information

about its version, the value written, and a reference to the previous body. The key used to
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1 class RepositoryEntry {
2 public final int version;
3 public final int previousVersion;
4 public final Object value;
5

6 RepositoryEntry(int version, int previousVersion, Object value) {
7 this.version = version;
8 this.previousVersion = previousVersion;
9 this.value = value;

10 }
11 }

Listing 3.5: A RepositoryEntry stores the contents of a VBoxBody in the TDR.

store each body in the repository (versionedKey) is generated by the function makeVersioned-

Key:

versionedKey = makeVersionedKey(vboxId, version)

The entry corresponding to versionedKey holds the information of a body: the value, the

committed version and the version of the previous body. Listing 3.5 shows this structure,

which effectively represents in the TDR the linked list of bodies from the VBox, as shown

in Figure 3.1 on page 36. The function makeVersionedKey must be injective, that is it must

return a unique versionedKey value for each pair (vboxId, version). The argument vboxId

is the identifier of the VBox, which was assigned by the application to the transactional

memory location. It is the one explicitly used by the application when invoking the get/put

operations in the Repository interface. When creating a new entry, the argument version

corresponds to the transaction’s commit version. When reading a body into a VBox, however,

the version to retrieve depends on the current transaction: The JVSTM needs to provide to

the application code the highest version that is less than or equal to the current transaction’s

read version. This poses a problem, because whereas the JVSTM knows the read version of

its current transaction, it does not know in which version was the VBox last written. For this

reason, the latest version of each VBox is kept in the headKey that is generated based only

on the identity of the transactional memory location:

headKey = makeHeadKey(vboxId)

This enables the JVSTM to calculate the headKey and obtain the most recent entry

without knowing its version beforehand. Then, if it needs a version older than the one

obtained, it simply iterates to the previous entry, using the information contained in this
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entry about the previousVersion. The intersection of the codomain of each of these

functions should be an empty set. This ensures that versionedKeys and headKeys never

intersect, which would cause inconsistencies in the data stored.

Using the mapping strategy I described, the entries stored in the TDR, in versioned

keys, never change. The only entries that may change are the ones that correspond to

the head keys, which correspond to the most recent commit of each VBox. Any operation

that updates such entries in the TDR must preserve the following invariant: Whenever the

entry for a head key is replaced, the entry being overwritten must already exist in its

corresponding versioned key. This invariant is required to ensure correct execution when,

concurrently with a lookup, some transaction commits a newer value. By definition, the

newer entry does not contain the value of interest for the transaction doing a lookup, which

must necessarily be running in an older version than the one being concurrently committed.

Therefore, if the head key lookup already sees the new value it must be able to iterate to the

next versioned key, which is guaranteed to exist.

As a result, conceptually, any application data that is publicized to the TDR is never

overwritten, which ensures that any transaction will always be able to access a value for

any given version. In spite of that, data could be removed from the TDR, if it is determined

to be no longer necessary: This is akin to garbage collecting old versions from memory, as

described in Section 3.3.1 on page 38.

3.5.2 Persisting Changes

The JVSTM already deals with all the in-memory transactional support, but it does not

provide any form of data storage. After having established the definition of the mapping

between the values in memory and those stored in the TDR, I can now present how to change

the commit operation so that the writes are also propagated to the TDR.

Listing 3.6 on page 46 presents the new commit algorithm for write transactions, which is

structurally identical to the original commit, containing the same three steps: (1) validate the

read set, (2) write back the write set, and (3) make the commit visible to other transactions. I

extend the JVSTM’s original commit to include the commitToRepository(int) operation

(in line 8), which sends the changes to the TDR.

The order of invocation of the commitToRepository(int) operation within the commit

procedure is critical to ensure the required transactional behavior: It is performed after the
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1 class Transaction {
2 ...
3 void commit() {
4 COMMIT_LOCK.lock();
5 try {
6 validate();
7 int newTxnumber = getVersionClock() + 1;
8 commitToRepository(newTxNumber);
9 writeBack(newTxNumber);

10 setVersionClock(newTxNumber);
11 } finally {
12 COMMIT_LOCK.unlock();
13 }
14 }
15

16 void commitToRepository(int txNumber) {
17 Repository tdr = getRepository().getTDR();
18

19 boolean success = false;
20 try {
21 tdr.beginTransaction();
22 putWriteSet(tdr, txNumber);
23 updateTxNumber(tdr, txNumber);
24 success = true;
25 } catch (Exception e) {
26 throw new CommitException(e);
27 } finally {
28 try {
29 if (success) {
30 tdr.commitTransaction();
31 } else {
32 tdr.rollbackTransaction();
33 }
34 } catch (Exception e) {
35 throw new CommitException(e);
36 }
37 }
38 }
39 }

Listing 3.6: The commit operation of the JVSTM is extended to write the changes
to the TDR, after validating the transaction in memory. The code in gray color is the
same from Listing 3.2 on page 37.
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transaction has been validated, and before making the changes visible in memory. The

former ensures that the state to persist is consistent, and the latter ensures that a possible

failure in the commitToRepository(int) operation occurs before modifying any shared

memory.

Listing 3.7 on page 48 shows the methods putWriteSet(Repository, int) and

updateTxNumber(Repository, int), which perform the necessary updates to the TDR.

The method putWriteSet(Repository, int) iterates the write set entries and for each

one:

• If the VBox being updated has an entry for the head key, then it stores the latest

RepositoryEntry in its versioned key (line 13).

• Creates a new RepositoryEntry to represent the changes being committed (line 17):

The value of the previous version depends on whether a previous version exists (the

value -1 represents that there is no previous version).

• Puts the new entry in the head key (line 19), overwriting any previous value for that

key.

The method updateTxNumber(Repository, int) simply overwrites a reserved key

that holds the version of the last committed transaction. This information is strictly nec-

essary only when bootstrapping the first node in the cluster. Part of the node’s startup

includes reading the version from this reserved key to initialize its local clock. Other nodes

can obtain this information at startup from any existing node already in the cluster. After

startup, existing nodes update their in-memory clock when processing a commit (either local

or remote).

Because all writing to the TDR is performed within the commit lock, there will be at most

only one write transaction running on the TDR at any given time and, thus, it will never

conflict with another. At this point, the only requirement placed upon the TDR’s transac-

tional system is that it provides atomicity: The commitToRepository(int) executes a

single TDR transaction that either fails, therefore leaving the TDR unchanged, or it succeeds,

therefore having atomically performed the writes.

Atomicity is necessary to account for any catastrophic crash of the application server

during the write to the TDR. If this happens, then when the application server restarts it

will see a consistent state, either before or after the current commit operation. Also, after
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1 class Transaction {
2 ...
3 void putWriteSet(Repository tdr, int txNumber) {
4 for (WSEntry<VBox, Object> wsEntry : this.writeSet) {
5 Object vboxId = wsEntry.getVBox().getId();
6 Object newValue = wsEntry.getValue();
7

8 RepositoryEntry current = tdr.get(makeHeadKey(vboxId));
9

10 int previousVersion = -1;
11 if (current != null) {
12 previousVersion = current.version;
13 tdr.put(makeVersionedKey(vboxId, current.version),
14 current);
15 }
16

17 RepositoryEntry newEntry =
18 new RepositoryEntry(txNumber, previousVersion, newValue);
19 tdr.put(makeHeadKey(vboxId), newEntry);
20 }
21 }
22

23 void updateTxNumber(Repository tdr, int txNumber) {
24 tdr.put(KEY_LAST_COMMITTED_VERSION, txNumber);
25 }
26

27 }

Listing 3.7: Implementation of the operations that write to the concrete TDR.
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persisting changes, the remainder of the commit algorithm can only fail for catastrophic

reasons (such as running out of memory), in which case the application server’s restart

will certainly see the current transaction as committed when reading the state from the

TDR. There is no additional dependency on the transactional semantics of the TDR for any

application transaction to succeed, because the application will never directly read state from

the TDR, and the JVSTM ensures that new writes are ignored until their in-memory commit

is published.

If the write to the TDR fails for some catastrophic reason (such as loosing a connection),

then the transaction is trivially aborted in memory.11 If, on the other hand, the catastrophic

failure occurs when writing back to main memory (thus, after having committed changes

to the TDR), when the application restarts it will consider that the transaction has been

committed.

3.5.3 VBox Caching

There is one cache instance on each application server, shared by all threads. The cache

indexes VBoxes by their identifier and it serves two main purposes:

• To keep the VBoxes available in memory for as long as possible, thereby to avoid hitting

the TDR with repeated requests for the same data.

• To ensure that there is only one instance of the same VBox loaded in memory—the

references to the VBoxes are shared by all threads, thereby enabling the JVSTM to

detect conflicts.

So, a key feature of using the cache is that application transactions will only access

the TDR if the requested data is not cached yet. The goal is that, once loaded from the

TDR, a VBox will remain in cache, as long as possible—that is until the memory allocation

requirements of the application cause the garbage collector to remove unused entries to make

space for other needed data. Only in that case may the entry be removed from the cache

and garbage collected (provided that it is not still in use by any running transaction). One

of the consequences of using this approach is that for applications whose working data set

fits in the cache, after warming up, the application server will never access the TDR for

11In fact, if the TDR becomes unavailable, the typical enterprise application becomes unusable. Using the
JVSTM, the application may still continue to provide read-only transactions, as long as they access only data
already loaded into main memory.
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reading an entry. Write transactions, however, will still use the TDR at STM-commit time

to store the entries written and to update control data used by the STM.

The VBoxCache implementation is shown in Listing 3.8 on page 51. It provides the

typical cache and lookup operations taking, respectively, a VBox to store and a VBox identifier

to lookup. TMM automatically handles the interaction with the cache, which is transparent

to the application.

To ensure that there is at most one shared VBox instance per memory location, the

cache(VBox) operation does not override an existing entry, when there is already another

VBox cached with the same vboxId: This operation always returns a reference to the VBox

in the cache with the vboxId of the VBox being cached—either the one being cached, if it

is the first for the given identifier, or the existing instance, otherwise—so that concurrent

attempts to cache a VBox with the same identifier, all get back the same reference. The

lookup(Object) operation simply returns the entry for the requested VBox, or null if it

does not exist in the cache.

The implementation of the cache follows the Identity Map architectural pattern [Fowler,

2002]: Every time the JVSTM needs to operate on a VBox, it first looks it up in the cache.

Whenever creating a new VBox instance, it immediately caches a reference to it, and it

always operates on the returned reference to ensure that it is operating on the unique

instance reference.

Each cache entry is a Java SoftReference12 to the actual VBox, so that the cache

entry is maintained while the VBox is strongly referenced.13 Whenever the VBox becomes

softly referenced, the VBox may be garbage collected and eventually its entry will be removed

from the cache.

3.5.4 Allocating VBoxes

The application’s code accesses shared state through the Repository API, using keys to

identify data. As I have shown, in Listing 3.3 on page 40, when intercepting an access (either

a get or a put), the first thing to do is to obtain, via the method vBoxFromKey(Object),

the corresponding VBox that wraps the datum identified by the key and, then, to invoke

through the JVSTM’s VBox API the corresponding (get or put) operation.
12http://docs.oracle.com/javase/7/docs/api/java/lang/ref/SoftReference.html
13http://docs.oracle.com/javase/7/docs/api/java/lang/ref/package-summary.html#

reachability
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1 class VBoxCache {
2 ...
3 final ConcurrentHashMap<Object, SoftReference<VBox>> cache = new ...;
4

5 VBox cache(VBox vbox) {
6 return cacheNewEntry(new SoftReference<VBox>(vbox), vbox);
7 }
8

9 // Cache a VBox and return the canonical reference to it
10 VBox cacheNewEntry(SoftReference<VBox> newEntry, VBox vbox) {
11 SoftReference<VBox> entryInCache =
12 putIfAbsent(this.cache, vbox.getId(), newEntry);
13

14 if (entryInCache == newEntry) { return vbox; }
15

16 VBox vboxInCache = entryInCache.get();
17 if (vboxInCache != null) { return vboxInCache; }
18

19 // current entry was GCed already. Remove and retry
20 this.cache.remove(vBox.getId(), entryInCache);
21 return cacheNewEntry(newEntry, vbox);
22 }
23

24 VBox lookup(Object vboxId) {
25 SoftReference<VBox> entry = this.cache.get(vboxId);
26 if (entry != null) {
27 VBox result = entry.get();
28 if (result != null) {
29 return result;
30 } else {
31 this.cache.remove(vboxId, entry);
32 return null;
33 }
34 } else {
35 return null;
36 }
37 }
38

39 static <K, V> V putIfAbsent(ConcurrentHashMap<K, V> map,
40 K key, V value) {
41 V oldValue = map.putIfAbsent(key, value);
42 return ((oldValue == null) ? value : oldValue);
43 }
44 }

Listing 3.8: The cache of VBoxes.
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1 class RepositoryWrapper extends AbstractRepository {
2

3 static final VBoxCache cache = new VBoxCache();
4

5 RepositoryWrapper(Repository tdr) {
6 super(tdr);
7 }
8

9 @Override
10 VBox vBoxFromKey(Object vboxId) {
11 VBox vbox = cache.lookup(vboxId);
12 if (vbox == null) {
13 vbox = allocateVBox(vboxId);
14 }
15 return vbox;
16 }
17

18 static VBox allocateVBox(Object vboxId) {
19 return cache.cache(new VBox(vboxId, VBox.NOT_LOADED_BODY));
20 }
21 }
22

23 class VBox {
24 ...
25 static final VBoxBody NOT_LOADED_BODY =
26 makeNewBody(NOT_LOADED_VALUE, 0, null);
27

28 static VBoxBody makeNewBody(Object value, int version,
29 VBoxBody previous) {
30 return new VBoxBody(value, version, previous);
31 }
32 }

Listing 3.9: The RepositoryWrapper, which wraps the TDR’s Repository im-
plementation.
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In Listing 3.9 on page 52, I provide the final RepositoryWrapper that integrates the

VBox cache from the previous section. The concrete method vBoxFromKey(Object) first

looks up the requested VBox from the cache: The expected common case is for this method to

find the VBox in the cache and to return it. However, when the application refers an existing

key whose VBox is not currently cached, or when the application stores a value in a key for

the first time, the lookup operation simply returns null. At this point, the infrastructure

must create a VBox to represent the transactional memory location being accessed, which is

accomplished by the method allocateVBox(Object): This method creates a new VBox

instance, caches it, and returns the canonical reference to the VBox, which is obtained from

the method cache(VBox). This procedure ensures that if, concurrently, two transactions

attempt to allocate a VBox for the same key, they obtain the same VBox instance. Also,

references to additional VBoxes that may be created for the same key, due to concurrent

allocation requests, will be immediately lost and become garbage collectable.

All VBoxes are instantiated with a special VBoxBody—the VBox.NOT_LOADED_BODY—

which represents that the contents of the VBox are unknown. If the application’s request is to

write to the VBox, then the value will be assigned during the commit, when a new VBoxBody

with the correct commit version and the correct value will be inserted at the head of the list

of bodies. If the application’s request is to read from the VBox, then the middleware will find

that the value is missing and load it from the TDR, before returning it to the application.

3.5.5 Loading the Contents of a VBox

In the JVSTM, getting the value of a VBox is a wait-free operation that consists in iterating

the bodies of the VBox, starting from the most recent, until it finds a body whose version is

less than or equal to the current transaction’s read version. This operation is guaranteed

to succeed, because all accessible versions are kept in memory. When reading a value from

a VBox, the current transaction will request a given body from the VBox using the method

getBody(int), whose implementation is shown in Listing 3.10 on page 54. The get()

operation delegates the request to the current transaction. In turn, the transaction—who

knows its read version—requests the correct body from the VBox and then returns the value.

To improve readability, I have elided other tasks that the method getBoxValue(VBox) may

perform, such as registering the read in the read set, which are not relevant to the current

matter.

Now, getting a value from a VBox must take into account the possibility that the required
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1 class Transaction {
2 ...
3 Object getBoxValue(VBox vbox) {
4 ...
5 VBoxBody body = vbox.getBody(getReadVersion());
6 ...
7 return body.value;
8 }
9 }

10

11 class VBox {
12 ...
13 Object get() {
14 return Transaction.current().getBoxValue(this);
15 }
16

17 VBoxBody getBody(int maxVersion) {
18 VBoxBody current = this.body;
19

20 while (current.version > maxVersion) {
21 current = current.previous;
22 }
23

24 return current;
25 }
26 }

Listing 3.10: The original get() method of the VBox. The iteration in
getBody(int) is bounded and guaranteed to find a suitable VBoxBody that con-
tains the requested value.
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body may be absent from main memory. In Listing 3.11 on page 57, I show the revised

portion of the operation getBoxValue(VBox), which accounts for the possibility of finding

a NOT_LOADED_BODY. The special marker NOT_LOADED_BODY is always the last element in

the chain of bodies, and it represents that there are no more older versions loaded in memory

for that VBox.

When a transaction requests a value from a VBox and detects that the required version is

not loaded, it triggers the reloadVBox(int) operation to read from the TDR the necessary

data into main memory. This operation (line 19 of Listing 3.11 on page 57) is performed while

holding the VBox’s monitor: It fetches from the TDR all versions between the oldest loaded

version down to the version that is less than or equal to the version that should be seen by

the current transaction (line 20). The resulting list of bodies is then placed at the tail of the

list of VBoxBodies that the VBox currently holds (line 21). The auxiliary operations used by

the reload are shown in Listing 3.12 on page 58 and Listing 3.13 on page 59:

• getOldestBody() searches the VBox for the oldest VBoxBody that is not the

NOT_LOADED_BODY. It returns null when the only body in the VBox is the

NOT_LOADED_BODY.

• replaceTail() replaces the existing reference to the NOT_LOADED_BODY

with the given reference to the new tail, which was obtained from

loadVersionsInRange(int). The reference to replace may originate from

either the VBox or one of its VBoxBodies, so this method first determines the type of

tail replacement to perform (selecting either replaceTailInVBox(VBoxBody) or

replaceTailInBody(VBoxBody)).

• getStartKey() determines the first key to use when loading versions: It is either the

key of the oldest body loaded in memory, or the head key for the VBox if there is no

body loaded.

• loadVersionsInRange(int) returns the new tail of bodies that should replace the

current NOT_LOADED_BODY. This method reads from the underlying TDR a sequence

of entries starting with the startKey (line 5) until either it finds a RepositoryEntry

whose version satisfies the requiredVersion (line 15) or no more entries exist

(line 17), in which case is creates a mock RepositoryEntry to represent the missing

value. In the latter case the application requesting this VBox’s value will obtain null

to represent a missing entry in the TDR for the datum being looked up. Finally, this
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method creates the linked list of VBoxBodies that it returns. Notice how the iteration

through the list of repository entries starts at the lowest version, due to the use of

addFirst(RepositoryEntry) when adding entries to the list.

By the end of the reload operation, a VBoxBody that satisfies the transaction’s re-

quired read version must exist in memory. Such body is obtained simply by invoking again

getBody(int) (line 10 of Listing 3.11 on page 57): This time there is no need to test again

for the NOT_LOADED_BODY.

Also very important is that, at any moment, there are never any VBoxBodies missing from

the list of VBoxBodies between the one at the head (the VBox’s current reference to body) and

the oldest version loaded. Upholding this invariant is crucial to ensure that no transaction

ever reads a wrong version from a VBox: Consider a transaction running in version N that

reads from a VBox that has never been cached locally; if it were to reload only the version

M needed by N (M ≤ N ), then another transaction running in version P, where P > N , could

also use version M from this VBox; yet, this would be incorrect, if there was already a version

O committed for this VBox such that P > O > N .

There are two more noteworthy considerations regarding the loading procedure. One is

that changes to the bodies of a VBox must occur in mutual exclusion with other attempts

to change any bodies of the same VBox (cf. Section 3.6.5 on page 71). For this reason the

reload(int) executes holding the VBox’s monitor. Otherwise, a concurrent reload for the

same VBox could cause some tail of bodies, not containing the required version, to replace

another. The other consideration regards what happens if the application code attempts

to lookup the value of a nonexistent key from the TDR—a key for which there is no value

assigned for the required version. In this case, the application is typically expecting to obtain

null from the following invocation on the Repository interface:

get(SOME_NONEXISTENT_KEY)

In my approach, I retain this same behavior: When accessing the key

SOME_NONEXISTENT_KEY, first there will be a VBox allocated for this location, as described

in Section 3.5.4 on page 50. Then, when the reloadVBox(int) occurs, it will either fail to

find any information on the TDR regarding this key (line 8 of Listing 3.12 on page 58), or it

will not find an entry for the required version (line 17). In both cases, the operation will set

null in the body corresponding to version 0. This does not constitute a write to the TDR,

but will effectively represent that the current transaction (Ta ) read this key, by adding it to

56



Section 3.5 · Extension for Persistent Data

1 class Transaction {
2 ...
3 Object getBoxValue(VBox vbox) {
4 ...
5 VBoxBody body = vbox.getBody(getReadVersion());
6 if (body == VBox.NOT_LOADED_BODY) {
7 synchronized (vbox) {
8 vbox.reloadVBox(getReadVersion());
9 }

10 body = vbox.getBody(getReadVersion());
11 }
12 ...
13 return body.value;
14 }
15 }
16

17 class VBox {
18 ...
19 void reloadVBox(int requiredVersion) {
20 VBoxBody tail = loadVersionsInRange(requiredVersion);
21 replaceTail(tail);
22 }
23 }

Listing 3.11: The extended getBoxValue(VBox). It accounts for the need to
reload the contents from the TDR.

57



Chapter 3 · TMM: A Transactional Memory Middleware for Enterprise Applications

1 class VBox {
2 ...
3 VBoxBody loadVersionsInRange(int requiredVersion) {
4 Repository tdr = getRepository().getTDR();
5 RepositoryEntry current = tdr.get(getStartKey());
6 LinkedList<RepositoryEntry> entries = new LinkedList();
7

8 if (current == null) {
9 // special case: the VBox never existed in the TDR

10 entries.addFirst(new RepositoryEntry(0, -1, null));
11 } else {
12 while (true) {
13 entries.addFirst(current);
14

15 if (current.version <= requiredVersion) {
16 break;
17 } else if (current.previousVersion == -1) {
18 // special case: the required version has no value
19 entries.addFirst(new RepositoryEntry(0, -1, null));
20 break;
21 }
22

23 current = tdr.get(makeVersionedKey(getId(),
24 current.previousVersion));
25 }
26 }
27

28 // build the new tail
29 VBoxBody bodies = NOT_LOADED_BODY;
30 for (RepositoryEntry entry : entries) {
31 bodies = VBox.makeNewBody(entry.value, entry.version, bodies);
32 }
33 return bodies;
34 }
35

36 void replaceTail(VBoxBody tail) {
37 if (this.body == NOT_LOADED_BODY) {
38 replaceTailInVBox(tail);
39 } else {
40 replaceTailInBody(tail);
41 }
42 }
43 }

Listing 3.12: Auxiliary operations for the reload of a VBox. Both
loadVersionsInRange(int) and replaceTail(VBoxBody) run while hold-
ing the VBox’s monitor exclusively.
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1 class VBox {
2 ...
3 Object getStartKey() {
4 VBoxBody oldestBody = getOldestBody();
5 if (oldestBody == null) {
6 return makeHeadKey(getId());
7 } else {
8 return makeVersionedKey(getId(), oldest.version);
9 }

10 }
11

12 VBoxBody getOldestBody() {
13 VBoxBody current = this.body;
14 if (current == NOT_LOADED_BODY) {
15 return null;
16 } else {
17 VBoxBody oldest = current;
18 while (oldest.previous != NOT_LOADED_BODY) {
19 oldest = oldest.previous;
20 }
21 return oldest;
22 }
23 }
24

25 void replaceTailInVBox(VBoxBody tail) {
26 this.body = tail;
27 }
28

29 void replaceTailInBody(VBoxBody tail) {
30 VBoxBody oldestBody = getOldestBody();
31 oldestBody.previous = tail.previous;
32 }
33 }

Listing 3.13: Auxiliary operations for the reload of a VBox (cont.).
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the read set, and it will conflict with any other transaction (Tb) that may concurrently write

to this key (if Tb is serialized before Ta and the latter is a read-write transaction). So, the

strong consistency guarantees apply, even when reading a nonexistent entry that is being

concurrently created.

3.6 Extension for Clustered Environment

Thus far, I have described all that is needed for TMM to support an enterprise application

running in a single-node configuration. This decomposition of the solution is intentional. One

reason is that it simplifies the exposition. The other reason is because multicore computers

with large amounts of available memory are becoming mainstream and they are a natural

target hardware for applications developed with the architecture that I describe: The highly

parallel workloads benefit from the increasing number of cores, and having large amounts of

main memory enables the STM to keep most, if not all, of the VBoxes in cache, thus reducing

the number of calls to the repository to fetch data.

Nevertheless, even though a single computer built with this commodity hardware might

be enough to run the entire application server with very good performance, there are several

other reasons for deploying an application in a clustered environment, such as support for

fault tolerance, data replication, scalability, load balancing, and live hardware upgrades. In

this section, I show how to extend the middleware to support more than one application

server, each running an instance of TMM, while continuing to ensure strong consistency for

the transactions. Next, I summarize the changes that must be made to the JVSTM, and then

describe how to implement them.

3.6.1 Overview of the Required Changes

The synchronization protocol that I propose leverages on the TDR to make shared application

state available on every node, as needed. If the concrete TDR happens to use a distributed

topology, I make the arguably legitimate assumption that such TDR should provide the

mechanisms required to handle its own data synchronization among multiple nodes. As

such, I do not provide any additional state transfer mechanism specifically designed for the

application data that is stored in the TDR. I only require that, after any data is committed

to the TDR, it will be made available to transactions that start on any application node,

henceforth. Consequently, in case of a distributed TDR, its commit operation needs to ensure
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that after returning, future transactions will be able to see the committed data, should they

request it, regardless of the node in which they begin.

Under the assumption that, once stored in the TDR, application data will be available

in any node when requested, the changes required at the STM level to support multiple

application servers are:

• To extend the JVSTM’s version clock to work globally across all nodes. This global clock

will advance upon a successful commit, and provide a unique version number for each

commit across all nodes.

• To acquire a cluster-wide commit lock during the commit of a write transaction.

• As part of a valid commit, send a message to the other nodes identifying the VBoxes that

have been changed by this commit (not their values), so that each local cache can be

invalidated. Total order of the commit messages is ensured, because they may be sent

only within the global commit lock. Notice that because VBoxes are transactionally safe,

those in the local cache of the committing node are automatically updated during the

STM’s standard commit and, thus do not get invalidated, as their remote counterparts

do.

• When committing a write transaction, after obtaining the global commit lock, ensure

that any remote commit messages, regarding versions earlier than the one now attempt-

ing to commit, have been duly processed before validating the committing transaction.

This may lead to invalidation of local cache entries due to remote writes, which, in turn,

may lead to the invalidation of the committing write transaction, if it has read any val-

ues that changed meanwhile. This behavior is important to ensure global serialization

of write transactions.

• When starting a new transaction, ensure that any remote commit messages that may

be pending to process at the moment the transaction attempts to start, have been duly

processed before obtaining a read version for this new transaction. This ensures that a

transaction begins the in the most recent version known to the node, thereby improving

its chances of a successful commit without conflicting with others.
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3.6.2 Synchronization Mechanisms

To implement the mechanisms that synchronize each JVSTM instance with the others in the

cluster, I use some of the distributed data structures provided by Hazelcast,14 which, among

other features, provides high-level distributed group communication primitives. Namely, I

use:

• A distributed atomic number to implement a global lock. When this lock is free, the

(positive) value of the atomic number represents the version of the most recently com-

mitted transaction. When the lock is held, its value is negative.

• A distributed topic to broadcast the remote commit messages. This is a

publish/subscribe messaging system that ensures ordered delivery of the messages

sent among all members of the cluster. Each remote commit message is sent to this

topic while holding the global commit lock, thus ensuring that messages are always

received in the order in which the commits occur.

• Another distributed atomic number to implement a shared counter used for assign-

ing unique identifiers to each member of the cluster. During startup each node

atomically reads and increments this counter to obtain a unique number. Each node

keeps the counter’s value in main memory only and sends it in every remote commit

message to identify the node that performed the commit. This way, the subscribers of

the distributed topic can easily ignore the commit messages that have originated on

their own node.

3.6.3 Committing a Transaction

When using the JVSTM, state changes occur only during the commit of write transactions.

These commits are already ordered within one application server because of JVSTM’s com-

mit lock. Now, they also need to be globally ordered among the commits from all servers,

which is achieved by using a (cluster-wide) global lock. Additionally, the commit operation

communicates a change log that is then used by the other servers to update their local state.

Each change log associates the commit version with the identification of the VBoxes that

have changed in that version. The change log is similar to a write set, except that it does not

actually contain the values written, only the identification of the VBoxes written.

14http://www.hazelcast.com/

62

http://www.hazelcast.com/


Section 3.6 · Extension for Clustered Environment

1 class Transaction {
2 ...
3 void commit() {
4 COMMIT_LOCK.lock();
5 try {
6 applyAllRemoteCommits();
7 validate();
8 int newTxNumber = performGlobalCommit();
9 setVersionClock(newTxNumber);

10 } finally {
11 COMMIT_LOCK.unlock();
12 }
13 }
14 }

Listing 3.14: The clustered commit algorithm of the JVSTM. It globally orders com-
mits across the cluster using a global lock, which is acquired only after a successful
best-effort attempt to validate the transaction locally. The code in gray color is the
same from Listing 3.6 on page 46.

Listing 3.14 shows the entry point for the extended commit algorithm, and Listing 3.15

on page 64 shows the additional operations that it uses. The following are the steps required

to successfully commit a write transaction:

1. Acquire the local commit lock.

2. Locally apply pending remote commits, if any.

3. Perform read set validation.

4. Acquire the global lock.

5. Locally apply outstanding remote commits, if any.

6. Perform read set validation (only needed if an outstanding remote commit was applied

after acquiring the global lock).

7. Commit the changes to the TDR.

8. Broadcast the remote commit.

9. Apply the changes to local VBoxes.

10. Release the global lock.
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1 class Transaction {
2 ...
3 void applyAllRemoteCommits() {
4 RemoteCommit rc;
5 while ((rc=ClusterUtils.getRemoteCommitMessages().poll()) != null) {
6 rc.apply();
7 }
8 }
9

10 int performGlobalCommit() {
11 int globalClock = ClusterUtils.globalLock();
12 int nextVersion = globalClock + 1;
13 boolean commitSuccess = false;
14 try {
15 if (getVersionClock() != globalClock) {
16 applyRemoteCommits(globalClock);
17 validate();
18 }
19 commitToRepository(nextVersion);
20 RemoteCommit rc = new RemoteCommit(getServerId(), nextVersion,
21 this.writeSet.getVBoxIds());
22 broadcastRemoteCommit(rc);
23 writeBack(nextVersion);
24 commitSuccess = true;
25 return nextVersion;
26 } finally {
27 ClusterUtils.globalUnlock(commitSuccess ? nextVersion :
28 globalClock);
29 }
30 }
31

32 void applyRemoteCommits(int upToVersion) {
33 RemoteCommit rc;
34 do {
35 rc = ClusterUtils.getRemoteCommitMessages().take();
36 rc.apply();
37 } while (rc.getCommitVersion() < upToVersion));
38 }
39 }

Listing 3.15: Additional methods for the clustered commit algorithm. Code in gray
color is reused from the previous commit algorithm in Listing 3.6 on page 46.
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11. Update the local version clock.

12. Release the local lock.

The new extended version of the commit algorithm serializes transactions globally across

the cluster and ensures that the changes made by a commit are visible to all transactions

that attempt to commit afterwards, upholding strong consistency. The commit of write

transactions still occurs within the local commit lock. This behavior remains unchanged

from the JVSTM: Even though a single commit lock may be a potential bottleneck, this lock

only affects the commit of write transactions; the upside of using a coarse-grained commit

lock is that it is much simpler to reason about the commit algorithm and to understand the

implementation.

Before acquiring the global lock—which is more expensive than the local lock—the commit

operation first performs a local optimization that consists in applying any remote commits

already queued locally (line 6 of Listing 3.14 on page 63) and executing a preliminary read set

validation against the information currently available (line 7). This is a best-effort validation:

If this preliminary validation fails, then it is possible to avoid the cost of acquiring the global

lock, because this transaction is already invalid. However, even if validation succeeds, given

that this node has not acquired the global lock yet, it is possible that another node may

be concurrently committing a write transaction (but not this node, because of the local

lock). So, even if the first validation succeeds, it may still be necessary to revalidate after

acquiring the global lock. In any case, the validation procedure follows the JVSTM’s original

implementation, which checks whether any of the VBoxes in the read set of the committing

transaction has a more recent version than the one that was read by this transaction: If so,

then the transaction is not valid to commit.

Assuming local validation succeeds,15 then the method performGlobalCommit()

(line 10 of Listing 3.15 on page 64) attempts to perform the commit globally. Acquiring the

global lock requires a successful Compare-And-Set (CAS) to change the current value of the

atomic number, from a positive value to -1. The lock acquisition method (globalLock()

shown in Listing 3.17 on page 69) returns the positive value read, which represents the

clock version of the most recently committed transaction. If the lock is not available,

then this thread must wait until it can acquire the lock: In a trivial implementation of the

globalLock(), this thread simply yields and retries, but there are alternatives, such as to

15Otherwise, the sequential flow is broken due to a CommitException thrown inside the method validate()
and the entire commit ends without success.
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implement some kind of back-off algorithm, or to block on a distributed queue of transactions

waiting to commit.

After acquiring the lock, it is then possible to determine how many remote commits still

need to be applied, by comparing the global clock with the local clock, which contains the

version of the most recent locally known commit (line 15 of Listing 3.15 on page 64). The

local copy of the version clock is updated whenever either a transaction commits locally or

a remote commit is processed (respectively, line 9 of Listing 3.14 on page 63 and line 17

of Listing 3.16 on page 67).

The algorithm then applies all the outstanding remote commits up to the version obtained

from the global lock. This operation ensures that the most recent global changes will be

accounted for, in case validation needs to be performed again. The entry point of the update

operation is the method applyRemoteCommits(int) (line 32 of Listing 3.15 on page 64).

This method returns only after locally applying the effects of all remote commits up to the

version of the global clock. When this method is called, it is theoretically possible that

no additional remote commit message is yet available in the local queue of remote commit

messages,16 in which case the method will block until the queue contains more elements to

process (line 35). Applying a single remote commit consists in performing two operations:

1. For each locally cached VBox listed in the remote commit’s write set, to commit a new

VBoxBody with the special value NOT_LOADED_VALUE for the corresponding version

(line 12 of Listing 3.16 on page 67). Later, when running a subsequent transaction,

if any of these values is needed, it will trigger a reload as described in Section 3.5.5

on page 53. However, unlike the case for the NOT_LOADED_BODY, these bodies have

a known version and will trigger only the reload from the TDR of the value for such

given version (detailed ahead in Section 3.6.5 on page 71). When needed, the value is

guaranteed to exist already in the TDR, because, in the clustered commit algorithm,

writing the changes to the TDR (step 7) precedes broadcasting the commit to others

(step 8). Additionally, notice that, for the moment, no other local transaction may be

interested in the values of this remote commit, because the local version clock has not

been updated yet. Moreover, only locally cached VBoxes are updated, which means

that if the write set of this remote commit does not refer any VBox locally cached on

the applying node, then applying the write set becomes an empty operation. Such can

16Messages may be delayed, but Hazelcast ensures that they are delivered in order. Although possible, a delay
is unlikely, because remote commit messages are sent only within the global lock, which this thread now holds.
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1 class RemoteCommit {
2 final int serverId;
3 final int version;
4 final Object[] vboxIds;
5 ...
6 void apply() {
7 for (Object vboxId : this.vboxIds) {
8 VBox vbox = getCache().lookup(vboxId);
9 // only update locally cached VBoxes

10 if (vbox != null) {
11 synchronized (vbox) {
12 vbox.body = new VBoxBody(version, NOT_LOADED_VALUE,
13 vbox.body);
14 }
15 }
16 }
17 setVersionClock(this.version);
18 }
19 }

Listing 3.16: Remote commit message.

easily occur in scenarios where the application’s workload is split among nodes in such

a way that the data accessed in each node do not intersect.

2. To advance the local version clock by updating it with this remote commit’s version

(line 17). This sets the linearization point for the remote commit: From this point

onwards transactions that begin in this node will see this remote commit. Recall that

in JVSTM all transactions read the version clock when starting.

After steps 5 and 6, which are required only if the local and global clocks differ after the

acquisition of the global lock, the current committing transaction is globally valid. The follow-

ing step in the algorithm is to store the changes to the TDR via commitToRepository(),

as described in Section 3.5.2 on page 45.

Next, this commit sends a notification to the other nodes. To do so, it uses the distributed

topic to broadcast a remote commit message containing:

• The identifier of the source node.

• This commit’s new version.
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• The list of identifiers of the VBoxes changed by this commit.

Each commit of a valid transaction entails the broadcast of one remote commit message.

The underlying group communication system ensures that these messages are delivered in

the order by which they are sent. Given that a remote commit message is broadcast only

within the global lock, the resulting order of the commits is well established. After the commit

message is delivered to another node, such node may already process it and, eventually, start

a new transaction in such version, even while this node is holding the global lock.

After writing back to memory, the commit executes the write back phase of the JVSTM.

The difference with regard to the application of a remote commit is that, for the current local

commit, the values of the bodies are known and, therefore, they are immediately set, instead

of using the special marker NOT_LOADED_VALUE.

The next step is to release the global lock. The globalUnlock(int) operation (line 16

of Listing 3.17 on page 69) takes a parameter that indicates the value to which the atomic

number of the global clock should be set: If the commit was successful, the global clock is

set to the nextVersion; if something went wrong, a CommitException will be thrown,

and the atomic number is restored to its original value. Also, for successful commits, the

local clock advances (line 9 of Listing 3.14 on page 63) and, finally, the local lock is released

(line 11).

3.6.4 Starting a New Transaction

Recall that, when creating a new transaction the JVSTM already reads the local clock to

determine the version in which the new transaction will read the values from the VBoxes.

So, in a single node, new transactions always begin in the most recent version available,

because all write transactions are guaranteed to perform node-local commits (as there is

only one node), which naturally advances the local clock.

In the clustered version, however, the local clock advances either by committing a local

transaction or by applying a remote one, as shown previously in the description of the

clustered commit algorithm. Additionally, it may be the case that, at some point in time,

a given node is not performing any write transactions. Nevertheless, it needs to update its

clock, so that new transactions can begin in the updated state.

To ensure forward progress in the clustered JVSTM, I extend the algorithm for begin-
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1 class ClusterUtils {
2 ...
3 static int globalLock() {
4 AtomicNumber lockNumber = getAtomicNumber(GLOBAL_LOCK_NAME);
5 do {
6 long currentValue = lockNumber.get();
7 boolean unlocked = currentValue != -1;
8 if (unlocked && lockNumber.compareAndSet(currentValue, -1)) {
9 return (int) currentValue;

10 } else {
11 globalLockNotYetAvailable();
12 }
13 } while (true);
14 }
15

16 static void globalUnlock(int value) {
17 AtomicNumber lockNumber = getAtomicNumber(GLOBAL_LOCK_NAME);
18 lockNumber.set(value);
19 }
20

21 static void globalLockNotYetAvailable() {
22 Thread.yield(); // alternatively sleep, wait on a queue, etc.
23 }
24 }

Listing 3.17: Group communication utilities.
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1 class Transaction {
2 ...
3 void tryToApplyAllRemoteCommits() {
4 if (!ClusterUtils.getRemoteCommitMessages().isEmpty()) {
5 if (COMMIT_LOCK.tryLock()) {
6 try {
7 applyAllRemoteCommits();
8 setReadVersion(getVersionClock());
9 } finally {

10 COMMIT_LOCK.unlock();
11 }
12 }
13 }
14 }
15 }

Listing 3.18: When beginning a new transaction TMM processes any remote commit
messages. This ensures that JVSTM’s local clock advances, even when there are no
local commits occurring.

ning a transaction to process any pending remote commit messages received and to apply

their commits locally. I do this by including, at the beginning of any new transaction,

an invocation to the method tryToApplyAllRemoteCommits(), shown in Listing 3.18,

which wraps a call to the existing method applyAllRemoteCommits() (defined in line 3

of Listing 3.15 on page 64). With this extension, the beginning of a new transaction can

cause state changes in the JVSTM to occur and, therefore, it executes while holding the

local commit lock, much like it occurs already during the commit operation. The method

tryToApplyRemoteCommits() first checks whether there is anything remaining to pro-

cess in the queue of remote commit messages (line 4) and, if so, tries to acquire the local

commit lock without blocking (line 5). If it succeeds in acquiring the lock, it applies all the

remote commits that it finds and releases the lock; otherwise, it does nothing. The lock

acquisition can fail, because the lock is being held either by a local commit or by another

starting transaction. Regardless, some thread will run the procedure required to advance

the local clock. An immediate consequence is that the beginning of any transaction remains

nonblocking. Forcing all beginning transactions to acquire the same lock would prevent

transactions from starting concurrently, which would be extremely penalizing, especially for

read-only transactions, because not only are they much faster than write transactions, they

are also expected to occur in much larger amounts. If this transaction successfully processes

any remote commits then it also upgrades its read version to the most recent value of the
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system’s clock.

3.6.5 A Review on the Updates to the Shared State

When using the JVSTM, all of the application’s shared state is made transactionally safe

through the use of VBoxes exclusively. The bodies of any VBox are updated, in mutual

exclusion, in the following situations only:

• During the commit of a local write transaction when writing back the values to main

memory. This corresponds to the write back phase from the JVSTM, described in Sec-

tion 3.3 on page 35.17

• When reloading the contents of a VBox from the TDR, as shown in Listing 3.11 on

page 57.

• During the application of a remote commit, when committing the special

NOT_LOADED_VALUE to the VBoxes residing in the node’s local cache, as shown in List-

ing 3.16 on page 67.

All of the three cases identified above operate on each VBox in mutual exclusion: Each of

them acquires the monitor of the single VBox instance that they intend to modify. As none of

these operations manipulates other VBoxes simultaneously, deadlocks due to the acquisition

of multiple monitors from different VBoxes cannot occur.

Before the introduction of the remote commits, a reload would be necessary only when the

JVSTM detected a NOT_LOADED_BODY at the end of the list of bodies, in which case it would

trigger the operation reloadVBox(int) (line 8 of Listing 3.11 on page 57). In a cluster,

however, it is possible that the value requested corresponds to a version that may have been

written by another node. In this case, the current node may have the VBoxBody for that

version, but its value will be set, initially, to the NOT_LOADED_VALUE (line 12 of Listing 3.16

on page 67).

In Listing 3.19 on page 72, I extend the operation getBoxValue(VBox) from List-

ing 3.11 on page 57 to detect this case, and to reload only the specific missing value for

the requested version. Note that, unlike the reload triggered by a NOT_LOADED_BODY, the
17Notice that JVSTM’s original writeBack(int) operation (from line 8 of Listing 3.2 on page 37), which has

not been shown in detail, was redefined to acquire the monitor of each VBox, when writing back the corresponding
value from the write set.
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1 class Transaction {
2 ...
3 Object getBoxValue(VBox vbox) {
4 ...
5 VBoxBody body = vbox.getBody(getReadVersion());
6 if (body == VBox.NOT_LOADED_BODY) {
7 synchronized (vbox) {
8 vbox.reloadVBox(getReadVersion());
9 }

10 body = vbox.getBody(getReadVersion());
11 } else if (body.value == NOT_LOADED_VALUE) {
12 vbox.reloadBody(body);
13 }
14 ...
15 return body.value;
16 }
17 }
18

19 class VBox {
20 ...
21 void reloadBody(VBoxBody body) {
22 Repository tdr = getRepository().getTDR();
23 RepositoryEntry entry = tdr.get(makeVersionedKey(getId(),
24 body.version));
25 body.value = entry.value;
26 }
27 }

Listing 3.19: Final version of the VBox reloading operation. It now accounts for a
missing value in any body.

required version is now known. Also, it is not necessary to acquire the VBox’s monitor when

reloading a missing value for an existing body, because this is a safe operation to perform

concurrently, given that it does not change the structure of the list of bodies. In the worst

case, the same value for a given VBoxBody could be overwritten multiple times by different

transactions: The value of a VBoxBody should be seen as a value object [Fowler, 2002].

3.7 Consistency Guarantees

In this section, I describe, informally, the consistency guarantees of the transactions exe-

cuted by TMM. Given that the proposed design results from extending the JVSTM, I take
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JVSTM’s consistency as the starting point, and discuss whether it is influenced by each of

the extensions that I have added.

As already mentioned in Section 3.3 on page 35, the JVSTM provides opacity. Recall

from Section 2.2.1 on page 13, that this correctness criterion is the combination of the

following properties:

P1 All committed transactions can be ordered in some sequential history that describes

the state observed and produced by each of those transactions, i.e. serializability.

P2 The order of temporally nonoverlapping transactions is preserved and their effects ap-

pear to occur within the interval in which they executed in real-time, i.e. strict serial-

izability.

P3 Transactions always access consistent data, regardless of their outcome (commit or

rollback), i.e. reads are always consistent.

Together, these properties provide very strong guarantees, which contribute greatly to

simplify the programmer’s reasoning. Simply embedding the JVSTM in an enterprise appli-

cation, as described in Section 3.4 on page 39, endows the transactions that the application

executes with these properties.

The strong consistency provided by the JVSTM relies mainly on (1) keeping the transac-

tion’s read set to validate that no location read changes during the execution of the trans-

action until it commits (to ensure properties P1 and P2), (2) reading the version clock when

beginning a transaction (to ensure property P2), and (3) using versioning for enabling con-

sistent reads throughout a transaction (ensuring property P3). Intuitively, as long as any

changes retain these behaviors, the same consistency will be upheld.

The extension to enable storing data externally, described in Section 3.5 on page 41,

retains all consistency properties—that is, it ensures opacity also. The changes in this

extension are completely innocuous with regard to how the consistency properties are upheld:

When getting a value from a VBox, the get operation always finds a value in memory to

return, even if, transparently to the caller, it was necessary to load such value from the

TDR. Any VBox that is read will enter the transaction’s read set as normal. At commit

time, the validation algorithm remains unchanged; there is only the additional invocation

of the commitToRepository operation, which retains the commit semantics, even in the

presence of catastrophic failures, as discussed in Section 3.5.2 on page 45. And, lastly, as
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long as there is only a single JVSTM instance, the local version clock is the only clock, which

means that any transaction will begin in the most recent version committed.

In Section 3.6 on page 60, I describe the last extension, which adds support for the

deployment of multiple application instances in a cluster, each running an embedded JVSTM.

In practice, each JVSTM instance works independently, except for the following interactions:

• At node startup, when the JVSTM instance acquires a unique identifier from a dis-

tributed atomic number.

• During a transaction, whenever data is loaded into main memory from the TDR.

• At commit time, when acquiring the global lock and broadcasting the commit message.

The first type of interaction is not relevant for consistency as it occurs only during the

bootstrap process of a node and, therefore, it does not intervene in the execution of any

transaction—I mentioned it only for completeness of the list of interactions.

The second type of interaction is indirect: Although the JVSTM instances do not com-

municate directly, they share state through the TDR. This state is of two types: application

state and infrastructural state. The application state corresponds to the content of VBoxes

that is stored at commit time and later loaded into main memory. The infrastructural state

corresponds to the version of the global clock, which each node reads when bootstrapping

(henceforth, the local in-memory clock advances when applying either a local or a remote

commit). In either case, the persistent state is written/updated atomically during the com-

mit of a transaction, i.e. the stored version clock advances at the same instant that the

values for that new version become available in the TDR. Therefore, data is always available

for any version that may be requested.

The third interaction occurs within a cluster-wide lock, so any state changes will occur in

mutual exclusion. Additionally, the decisive validation of the commit occurs after ensuring

that the local version clock is up to date with the global clock, so that any changes that

have occurred before, in real time, will be taken into account and the transaction will always

be ordered after the last write that has occurred globally. The only difference is that when

beginning a transaction there is only a best-effort update of the local clock. Recall that,

when beginning a transaction, I decided to retain the original behavior of the JVSTM of

having a nonblocking start. This has a consequence: It makes it possible, as discussed

in Section 3.6.4 on page 68, for a transaction to begin in a read version that is not the most
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up to date version, with regard to the global latest commit version. This precludes property

P2.

Nevertheless, this is not an issue for write transactions. Such transactions, when com-

mitting, will obtain the global lock and before running validation will ensure that they have

locally advanced the clock up to the most recent committed version globally. So, validation

will be performed against the most recent state, and at most it will lead to a restart in the

new version. Read-only transactions, though, do not enforce such synchronization so they

may effectively execute in a consistent state, but be serialized to a logical point in time that

is earlier that their real start time.

So, in summary, when considering a history containing the transactions that ex-

ecute in all nodes of a cluster, properties P1 and P3 are always upheld. Property P2

is always upheld for the write transactions, as well as for each subset of the history

containing only transactions from the same node.

In practice, the only scenario that does not uphold opacity—only because it does not

uphold P2—occurs when a read-only transaction is allowed to run without seeing the up-

dates that have already been committed, in real-time in another node, before such read-only

transaction begins, and this behavior is observed externally. For example, in the following

sequence of interactions: Consider a client thread running a write transaction T1 in node

N1. Afterwards, when the same client executes a second transaction T2, if T2 is read-only,

and it happens to run on a node other than N1, then it is possible that T2 does not see the

updates performed by T1. This can occur if the node running T2 has not updated its local

clock with T1, by the time T2 begins.

If, however, ensuring P2 cluster-wide for all transactions is considered essential, here is

a simple overview of some of the techniques that might be used:

• To delay the completion of every commit until the committing node receives an acknowl-

edgment from all other nodes, indicating that the commit message has already been

fully processed, i.e. the commit has been applied in all nodes. This alternative greatly

increases the latency of each write transactions, but it does not affect the latency of the

read-only transactions.

• To delay the completion of every commit until the committing node receives an ac-

knowledgment from all other nodes, indicating that the commit message has already

been enqueued for processing (even though it might not have been fully processed),
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and, in each node, to force the processing of every enqueued commit message before

starting any new transaction. This alternative will affect the latency of all transactions.

The advantage is that the latency of the write transactions is less affected than in the

previous alternative, because it needs only to ensure enqueueing, not really wait for

the entire processing of the commit message, which is transferred to the beginning of

every transaction.

• To use a load balancer for the cluster, which always sends requests from the same client

to the same application server. This alternative is more complex than the previous,

because it requires the incorporation of an additional element into the architecture. It

will affect the latency of every clients’ request, albeit not of the transactions themselves.

Additionally, it assumes that each client does not communicate its knowledge of the

system to other clients. Otherwise, it would be possible for a client with access to

additional information, to realize that some write transaction of another client should

already be seen, when it was not.

• To allow the client to inform the transactional system, about what is the most recent

version that the client is aware of, so that the transactional system could delay the

beginning of this client’s transaction until it was up to date with such version. This

addresses the limitation of the previous alternative. However, it requires collaboration

from the clients, and for the existing transactional API to be extended. It has the

advantage of only increasing the latency for those clients that specifically request a

given version.

• Ultimately, to force every transaction to acquire the global lock when beginning, so that

it could know what is the most recent value of the version clock and then to update

to that version before beginning the transaction. This alternative requires the least

changes. However, besides increasing the latency of all transactions, it also increases

the usage of network bandwidth by forcing every transaction to acquire the global lock,

which represents a scalability bottleneck. It might be an acceptable alternative only

for systems running extremely long transactions, such that the cost of acquiring the

global lock at the start of every transaction is diluted in the transaction’s duration.
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3.8 Experimental Evaluation

In this section, first I describe the experiments used to evaluate TMM, Then, I present and

discuss the results obtained.

One goal, is to compare how the performance of an enterprise application is affected when

using TMM versus using a standard implementation approach, that is, without TMM. A major

design characteristic of TMM is that it is designed to reduce the number of read accesses to

the TDR. Such, coupled with JVSTM’s efficiency regarding its read operation, leads to the

expectation that the performance for read-dominated workloads should improve, and that,

the more read-dominated a workload is, the higher the expected improvement.

Another goal of this evaluation, is to experiment with the use of TMM on top of different

TDRs. This experimentation is relevant for two reasons: For one, it should show that TMM,

in fact, can be applied regardless of the underlying TDR, at least for the subset of TDRs

tested. For another, it should show that the possible improvements obtained for the typical

workloads are not specific to a given TDR of choice, and that they occur across different TDR

implementations, albeit the actual improvements will, by force, be partially dependent on the

performance of the TDR.

Real-world enterprise applications tend to compromise with a specific type of data storage,

and usually it is not trivial to reimplement them using another type. Also, the sheer size of

the source code makes these applications overly complex and expensive to manipulate, in

order to obtain specific performance measurements for different scenarios/workloads.

Considering that using a real-world enterprise application would be a hurdle for several

reasons, such as the ones I just mentioned, I opt to follow a common approach to measure

performance, whereby I use a controlled benchmark, namely RadarGun, to simulate the

workloads, typical of these applications, and measure the resulting throughput.

RadarGun18 is a benchmarking framework, developed by Red Hat, and created specifically

to support the comparison of various Java-based implementations of IMDGs. At its core,

RadarGun implements a sequence of steps, called stages in RadarGun’s terminology, which

are executed concurrently by each of the nodes in a cluster. The stepping between each stage

is controlled globally via a master node that is aware of the current stage running in each

of the slave nodes. Figure 3.3 on page 78 shows an example of the typical stages provided

18http://radargun.github.io/radargun/
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Figure 3.3: Example of stage synchronization in RadarGun. Each stage executes
concurrently in each node. Synchronization between stages is controlled by a sepa-
rate master node. Image source: https://github.com/radargun/radargun/
wiki/Five-Minute-Tutorial.

by RadarGun: After ensuring that each node is deployed successfully and has joined the

cluster, it runs a warm up sequence, followed by the actual performance benchmark. In the

end, each node return its statistics to the master node, which then aggregates the results

and generates the final report.

RadarGun makes it easy to replace one IMDG implementation with another: It defines a

generic interface (CacheWrapper19) that must be implemented for each IMDG supported.

This is done through a corresponding plug-in extension to the framework, one per concrete

IMDG instance.

So, RadarGun provides a simple and practical way to test the same application logic on

19https://github.com/radargun/radargun/blob/master/framework/src/main/java/org/
radargun/CacheWrapper.java
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top of different IMDGs, which are the most challenging type of TDR against which to test

TMM. Much like TMM, IMDGs are also developed with the goal of improving the performance

of data access: Data is stored in main memory, so reading and writing data should be as fast

as possible, at least much faster than in other types of TDR, such as disk-bound relational

databases. Additionally, by running the IMDG embedded into the application (instead of in a

separate tier, using a client/server model), the communication cost between the application

and the IMDG amounts to method calls in the application code stack, just like in TMM. For

these reasons, RadarGun is a good fit to use in the evaluation of TMM.

The CacheWrapper is similar to the Repository that I defined in Listing 3.1 on

page 32, so that the CacheWrapper may be seen as a Repository, and the corresponding

IMDG as a TDR. To integrate TMM into the RadarGun framework, I created a plug-in ex-

tension, whose CacheWrapper implementation decorates another IMDG, and implements

the TMM algorithms described in the previous sections of this chapter. In turn, when TMM

needs to access its underlying TDR, it makes the necessary calls on the CacheWrapper of

the decorated IMDG. This way it becomes possible to test a given IMDG, and then to replace

it with its TMM-decorated version, while maintaing the same application logic.

3.8.1 Description of the Experiments

Next, I present two groups of experiments. In the first group, I use a single application node,

and vary the number of threads that execute concurrently (from 1 to 48), as well as the ratio

of write transactions (from 1% to 20% of the total number of transactions executed). In the

second group, I use a cluster of application servers (from 2 to 12), each with a fixed number

of threads (4). The first scenario simulates vertical scaling, in which a single powerful server

may be upgraded to have more resources, such as memory modules and CPU cores, as

needed by the application to serve its clients. The second scenario corresponds to horizontal

scaling, in which more parallel resources are added by joining more nodes to a distributed

application.

All tests were executed on a single machine with a NUMA architecture contain-

ing four AMD Opteron 6168 processors. Each processor contains 12 cores (in two

units of 6), thus totaling 48 cores. No other significant processes were executing in

the machine during the tests. Furthermore, the system has 128GB of RAM, which is

more than enough to distribute among all application servers. During the measure-

ments there were no full garbage collections. The application servers executed with the
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following options passed to the Java Virtual Machine: -verbose:gc -Xmx5000M

-Xms3000M -server -XX:+UseConcMarkSweepGC -XX:+AggressiveOpts

-XX:NewRatio=5 -XX:SurvivorRatio=2 -XX:ParallelGCThreads=4

-Dhazelcast.operation.thread.count=4.

Each transaction performs a fixed number (1,000) of random data accesses. Each thread

manipulates (reads and writes) disjoint data. This way, there are never semantic conflicts

among concurrent transactions. I am aware that a zero-conflict rate does not represent a

real-world scenario, albeit not being far from it, by taking into account the conflict rates

measured in the real-world applications described in Section 2.4.1 on page 22. Nevertheless,

my intention is to measure the maximum possible throughput of the configurations under

test, and therefore, the introduction of application-induced contention, which naturally limits

performance, is not desirable.

The IMDGs under test are Hazelcast20 v3.0.2, EHCache21 v2.6, and Infinispan22 v5.3.0.

Although there are presently a few more plug-in extensions present in RadarGun’s code

repository, they either have been superseded by newer products (such as JBossCache by

Infinispan), or failed to work as intended (such as Coherence), which has limited the experi-

ments to the three aforementioned IMDGs.

Generally, IMDGs can be configured to store data either using full or partial replication

among the available nodes. Full replication (replication for short) means that every node

will store a copy of the same data, whereas in the case of partial replication (distribution for

short), it is usually possible to configure how many replicas of each datum the system as

a whole keeps. Replication tends to provide better read performance at the cost of having

to synchronize potentially more nodes when committing. The opposite is true for data dis-

tribution, where the reads may have to fetch data from remote nodes. There is a myriad of

configuration combinations, and these affect the semantics provided to the application. For

example, one may consider whether stale reads are allowed (reads from replicas that have

not been updated yet), whether written data should be updated synchronously/atomically in

every replica, and whether each node may eventually decide to cache data that is frequently

accessed.

Taking into account that TMM automatically caches, locally in each node, the data set

manipulated by a transaction, and that the workloads under test are read dominated, I

20http://hazelcast.com
21http://ehcache.org
22http://infinispan.org
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Figure 3.4: Total throughput for the single-node executions using 1% write trans-
actions.

configured all IMDGs to use full replication. The only exception to this is Hazelcast, which, by

design, is limited to support only six replicas of each datum. For this reason, in the clustered

tests, when using more than six nodes, data will not be fully replicated, in Hazelcast alone.

3.8.2 Results

The results for the single-node executions are shown from Figure 3.4 to Figure 3.6 on

pages 81–82. Each plot corresponds to a workload with a different percentage of write

transactions. In all plots, the number of threads changes in the horizontal axis and the

throughput is represented in the vertical axis (in thousands of transactions per second).

Each plot for a given IMDG is labelled with a unique abbreviation: Hazelcast (HZ), EHCache

(EHC), and Infinispan (ISPN). Each implementation with TMM decorating an IMDG is labelled

with the prefix TMM+.

Regardless of the workload, the versions running on top of TMM are clearly better than

their counterparts without TMM. This is true, even for write ratios of 20%, which can be

regarded as high for the typical workloads of large enterprise applications: In the use cases

described in Section 2.4.1 on page 22, FénixEDU and •IST measured consistently throughout
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Figure 3.5: Total throughput for the single-node executions using 5% write trans-
actions.
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Figure 3.6: Total throughput for the single-node executions using 20% write trans-
actions.
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Minimum and maximum speedup per workload type

IMDG 1% 5% 20%

HZ 3.27 111.28 2.68 67.55 2.26 13.80

EHC 12.32 49.29 11.55 35.64 9.96 19.62

ISPN 2.53 4.03 1.78 3.06 0.48 1.53

Table 3.1: Minimum and maximum speedup achieved by TMM, in a single node,
when decorating each IMDG. TMM performs, at the minimum, twice as good as HZ
(2.26 minimum speedup), and almost ten times better than EHC (9.96 minimum
speedup). It looses only for ISPN at 20% write transactions.

several years an average of write transactions below 2%, and the same was reported for other

applications.

At 1% write transactions, the best performance improvement ranges from 4 times more

throughput (achieved for ISPN at 48 threads), to as high as 111 times more (achieved for

HZL at 48 threads). Table 3.1 summarizes the minimum and maximum speedup achieved

by TMM when decorating an IMDG, in each of the three workloads. The improvements are

very significant, across all workloads. The minimum speedup (that is, the lowest relative

improvement), is above 1 for all scenarios except for ISPN at 20%. Still, it is noteworthy

that, whereas at 20% write percentage ISPN is able to outperform TMM for a high thread

count, the peak throughput achieved TMM+EHC at 16 threads is substantially higher than

ISPN’s highest throughput. In this scenario at 48 threads ISPN has approximately double the

performance of TMM+ISPN. On the one hand, ISPN is able to scale much better than the other

IMDGs. On the other hand, at 20% write transactions, for all TMM-based versions, the effect

of the single commit lock is noticeable, in that, for a low number of threads the performance

increases (approximately, up to 16), but then the relatively higher rate of commits causes

the single commit lock not to scale, as the threads begin to have to wait to acquire the lock.

In fact, already at 5% write transactions, the effects of using a single commit lock become

apparent at 48 threads. Intuitively, as long as the time it takes to commit a transaction is

short enough, so that all transactions can access the commit lock without having to wait to

acquire it, it will be possible for TMM to scale.

As the total number of concurrent transactions increases—either because the absolute

number of concurrent transactions increases for a given percentage of write transactions

(moving from left to right in each of the horizontal axis), or the percentage of write transactions

increases for a given number of total transactions (moving from one plot to the next)—so will
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the number of concurrent commits increase, thereby tending to limit the availability of the

single lock for each thread.

Nevertheless, on the overall, and as expected, using TMM in a single node greatly improves

the throughput of the application. This is so, even when the comparison is made with other

implementations that also perform local memory accesses to read data. After the warm-up

stage of the benchmark, the cache of VBoxes is supposed to be loaded with the application’s

data, which means that during the benchmark stage, the values will be available in this

cache, and TMM will not need to contact the TDR during the body of the transaction to get

data. Only during commit of a write transaction will the TDR be needed. In spite of the

potentially high cost of the single lock approach, taking less time to execute the transaction’s

body helps to mitigate the commit bottleneck that becomes visible only for higher commit

rates.

Let us now consider the second scenario, in which the number of concurrent threads

also increases up to 48, but this time by adding more nodes, each using a fixed number

of four threads. The results are displayed from Figure 3.7 to Figure 3.9 on pages 85–86.

Again, each plot corresponds to a workload with a different percentage of write transactions.

The horizontal axis contains the variation in number of nodes tested, and the vertical axis

displays the overall throughput (all nodes combined).

Regarding the IMDGs alone, the first aspect worth noting is that they perform quite dif-

ferently from each other. Both ISPN and EHC are able to scale as the number of nodes

increases, albeit at very different rates, with ISPN displaying much better performance. HZ

always begins slightly above EHC, but then its performance drops substantially above 6

nodes. This is caused by HZ’s design choice of limiting to 6 the maximum number of replicas

of each datum. When running at 8 nodes or above, some of the data accesses will neces-

sarily involve remote calls, which is extremely penalizing when compared to a local read.

This explains HZ’s performance drop. Even though each IMDG performs differently, their

performance tendency appears to be little affected from a variation in the percentage of write

transactions, that is, each of them displays similar lines in each plot, apart that their overall

throughput drops slightly as the percentage of write transactions increases.

With TMM, however, the total thoughput of the system decreases when more nodes are

used, except when using ISPN for 1% write transactions. In this case, TMM scales up to

6 nodes, improves on ISPN (doubling the throughput), and it keeps better performance up

to 10 nodes. Then, just like in all other workloads, the tendency is for a flat line, with a
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Figure 3.7: Total throughput for the clustered executions using 1% write transac-
tions.
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Figure 3.9: Total throughput for the clustered executions using 20% write transac-
tions.

small downwards tendency. The reason for this improvement over ISPN, is related to ISPN

being the best performing IMDG of the three, and to the single commit lock: What happens

is that, once again, while the duration of the commit operation is short enough to avoid

contention, the transactions can progress concurrently. The fact that ISPN has such good

performance, when compared to the other IMDGs, allows for TMM+ISPN’s commit to take less

time, and thus, contention is avoided up to a higher number of threads. When this occurs, the

transactions can progress concurrently, and the improved transaction performance greatly

enhances overall throughput.

When TMM is using the other IMDGs, their performance affects the commit so much that

contention occurs from very early on. Still, it outperforms HZ for 1% write transactions; for

5% and 20%, when running above 6 nodes, it is better only because of the performance drop

in HZ, and because of TMM’s local cache that prevents read accesses to the TDR.

The problem with the commit of write transactions becomes apparent when considering

two opposite workloads: a read-only scenario, and a write-only scenario. In the read-only

workload displayed in Figure 3.10 on page 87, it is clearly seen that TMM performance is

independent of the underlying TDR. In fact, after warming up, there are no more accesses

86



Section 3.8 · Experimental Evaluation

 0

 20

 40

 60

 80

 100

 120

 2  4  6  8  10  12

T
h
ro

u
g
h
p
u
t 

(1
0
0
0
 t

x
s/

se
c)

Nodes

HZ
TMM+HZ

EHC
TMM+EHC

ISPN
TMM+ISPN

Figure 3.10: Total throughput for the clustered executions using read-only trans-
actions.

to the TDR during the benchmark, because all data is cached. As a result, scalability

is linear, and performance is much greater than that of the corresponding IMDGs. On

the other extreme, shown in Figure 3.11 on page 88, the performance of all TMM-based

implementations plunges. The only relevant difference between the two workloads is in

the commit operation, which is empty in the read-only case. Notice that, although each

write commit still invalidates data in the other nodes, reloading such data is never required,

because each thread is accessing disjoint data.

Lastly, let us consider, for each workload type, the best overall performance achieved by

each IMDG, against the best performance achieved by the corresponding TMM implementa-

tion, regardless of the application deployment topology. Such comparison is made possible

because both groups of experiments ran in the same physical machine, and the total number

of threads used in each deployment is identical between the two groups of tests. For example,

a clustered execution with N nodes provides as many concurrent threads as the single-node

execution at 4 × N threads. Table 3.2 on page 88 presents these values. Except for ISPN at

20% write transactions, the TMM-based implementation always outperforms its counterpart,

and most interestingly, the best performance for TMM is always achieved in a single node.

Even though there may be several reasons why an application would require deployment
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Figure 3.11: Total throughput for the clustered executions using 100% write trans-
actions.

in the distributed setting, at least for those applications where the workload fits in a single

powerful computer, a TMM-based implementation clearly offers major improvements, for the

most common workloads. Notice that, even assuming continuous scalability of the IMDG

solutions, it would take a high number of nodes to even match the performance reached by

TMM in a single node, making TMM much more efficient in terms of resource usage.

As an ending remark, it should be noted that in all experiments TMM’s transactions

execute with the consistency guarantees described in Section 3.7 on page 72, whereas the

transactions from the IMDGs, at best, can provide Repeatable Read semantics only, which

Highest overall throughput for each implementation by workload

Workload HZ TMM+HZ EHC TMM+EHC ISPN TMM+ISPN

1 4394 60728 4116 52025 29859 56684

5 3835 37284 3762 36797 25063 38000

20 4083 11292 3199 20057 16065 9388

Table 3.2: Highest throughput ever achieved by each implementation. The TMM-
based implementations are able to obtain their best results using only a single node.
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involves different complexities and cost of bookkeeping per transaction, within in each im-

plementation.

3.9 Discussion and Related Work

Snapshot isolation was first defined in [Berenson et al., 1995]. Today, most database vendors

support snapshot isolation as the strongest isolation level (confusingly, also named serializ-

able in some database implementations23), which, despite exhibiting none of the anomalies

that the SQL standard prohibits, is not serializable. Since the broad adoption of this isolation

level by database implementations, other researchers have cataloged the weaknesses present

in this isolation level [Fekete et al., 2004].

In [Fekete et al., 2005] the authors propose a theory to identify when nonserializable exe-

cutions of applications can occur under snapshot isolation, which has been used to manually

demonstrate that some programs may safely run under snapshot isolation without exhibiting

any anomalies. This is done by analyzing possible interferences between concurrent trans-

actions. Additionally, the authors also propose ways to eliminate the identified interferences,

but at the cost of manually modifying the program logic of these applications to make it

serializable.

Later work [Alomari et al., 2008], has demonstrated that the risks involved in using

weaker consistency semantics often do not pay off for the absence of serializability. The effort

of ensuring safe executions under snapshot isolation is high, and in many applications the

performance penalty for running with full serialization guarantees is low, when compared

to the risks of data corruption because of concurrency bugs due to the absence of strong

consistency guarantees. Also, these same feelings are expressed anecdotally by software

engineers [Shute et al., 2013].

In another work [Jorwekar et al., 2007] its authors propose an automated tool to detect

the snapshot isolation anomalies, but to ensure full coverage, they incur in false positives.

Also, computing the minimum set of conflicting transaction pairs that require modification

is a NP-Hard problem. Regardless, modifying the program code to eliminate the conflicts is

still a manual task.

An alternative to changing program code is to change the transactional engine to ensure

23PostgreSQL versions prior to 9.1, provided only snapshot isolation when selecting the serializable isolation
level.
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strict serializability. This is proposed in [Cahill et al., 2009]. The authors describe an

algorithm that provides serializability, while showing, in most cases, a performance similar

to the one obtained when running with just snapshot isolation. This work, provides evidence

that serializability does not incur necessarily in performance problems.

Yet another approach to ensuring program correctness is presented in [Bernstein et al.,

2000], which defines a new correctness criteria—semantic correctness—that is weaker than

serializability, and describes the conditions in which executions preserve given integrity con-

straints for each isolation level.

Neither of the approaches previously mentioned focuses on the reduction of the number

of database queries. Such requires some form of caching on the application server to avoid

database access. In [Perez-Sorrosal et al., 2007], the authors present a versioned object cache

for J2EE that reduces the number of database accesses and provides snapshot isolation on

top of a relational database only. This work is in line with my purpose of reducing the number

of calls to the data repository, via caching of data, as a means to improve performance.

The authors show how standard (non-versioned) cache implementations may even further

weaken the consistency semantics provided by the data repository, by inadvertently providing

inconsistent reads. Their solution imposes that the database must also be able to provide

snapshot isolation. They also describe a replication model where each node in the cluster is

built from a relational database and a J2EE application server. Their object cache allows for

a reduction in the number of database requests, which is akin to the purpose of the cache

in TMM. There are, however, some noteworthy differences. First, their middleware does not

ensure referential uniqueness: When an object is modified, a new copy is created and stored

under a different cache entry. In TMM, even though internally there may exist multiple

versions for the values of a given key, from the programmer’s perspective there is only a

single value accessible, always identified by the same key. A second difference regards to the

inherent concurrency of the transactional system. TMM blocks during the commit of a write

transaction. Their approach uses a different lock for each object update operation, and this

is related to not being able to ensure more than snapshot isolation semantics. A third aspect

is that their work is geared towards providing availability and scalability, which led to an

architecture of one database per application server, with the cache updates being sent over

a dedicated group communication system. However, there is no protocol for dynamically

adding a new node to the cluster, which would require database state synchronization to

keep up with the rest of the system. In TMM, there is conceptually a single database—the

TDR, which can be replicated internally—and the cache in each application server is updated
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from this database, allowing for adding and removing application servers at any moment.

There has also been recent work, geared towards providing increased consistency without

compromising scalability. For instance, the work from [Couceiro et al., 2009] and [Romano

et al., 2009] focuses on extending the JVSTM’s design with scalable and fault-tolerant dis-

tributed transactional memory algorithms. Their work builds on a group communication

system between the nodes, currently implementing an algorithm where only a single member

of the cluster is appointed as responsible for applying the effects of the write transactions to

the database.

GMU [Peluso et al., 2012] implements a genuine partial replication protocol and it uses

a multi-version scheme to ensure that read-only transactions are never aborted. It ensures

Extended Update Serializability [Adya, 1999], a consistency criterion weaker than opacity,

which is provided by the JVSTM. A distinctive feature of TMM is that it is independent of

the underlying TDR, whereas any GMU implementation will need to be specifically tailored

to the target system.

TMM clearly improves performance for applications running on single computers with

many cores and large heaps. Any performance improvements attained in a clustered envi-

ronment are, in a sense, a by-product of this design, which I believe can be further improved,

by taking into account the specificities of a distributed system in the design of TMM. Some

of the technical solutions proposed in the aforementioned works, could be interesting to im-

prove the performance of the clustered TMM, such as the use of vector clocks for overcoming

the potential bottleneck of the global clock.

JVSTM was the first and, to the best of my knowledge, the only STM used in the imple-

mentation of real-world enterprise applications: FénixEDU [Instituto Superior Técnico, 2011]

has been using the JVSTM in a production environment since 2005. However, the solution

implemented is hardwired to a single relational database. It relies on the database (1) to

store application data, (2) to acquire a cluster-wide lock, and (3) to share cache invalidation

messages. The solution that I propose abstracts the underlying database, and can be ap-

plied to any type of data storage system. Nevertheless, it still suffers from similar limitations

regarding the commit lock.

91



Chapter 3 · TMM: A Transactional Memory Middleware for Enterprise Applications

3.10 Summary

This chapter describes TMM, a new middleware for enterprise applications that leverages on

STM technology and recent hardware to be able to provide strong consistency and, for some

workloads, to greatly improve application performance, in particular, when executing in a

single powerful computer. A key feature of this solution is that transaction control is shifted

into the application, and the database is used only as a data storage element.

The chapter begins with an overview of the proposed solution, in which I describe its

main elements and how they are combined, to produce the end result. Then, I present the

algorithms that implement the proposed design. The presentation is partitioned in three

stages, starting from the embedding of the JVSTM into the application. Each stage builds on

the previous stage and extends it with additional functionality. In the end, the middleware is

capable of supporting the application’s needs for transactional operations over shared data

that is persisted in a data repository, and it supports clustered deployment of the application

server. Each node in the cluster contains its own STM instance. These instances coordinate

themselves through a synchronization protocol that invalidates cached entries whenever a

commit writes new data, and uses the underlying database strictly for storing and sharing

data across the cluster.

To evaluate the proposed middleware, I use a benchmarking framework, RadarGun,

which is specifically designed to compare different IMDG implementations, integrated as

plug-in extensions. I created a plug in that uses TMM to decorate any other plug in, which

enables to easily compare how the same application logic performs when executed on top of

each IMDG, as well as when using TMM’s plug in to decorate these IMDGs. Even though all

TMM-based implementations provide strong consistency, whereas IMDG-based implemen-

tations provide at best repeatable read semantics, the results show increased application

performance, most notoriously for the single-node scenarios, where depending on the IMDG

the best speedups vary from approximately four times to over a hundredfold.

The clustered executions using TMM are clearly affected by the use of a single commit

lock. In spite of that, it is noteworthy that the performance improvements in a single node

alone are such that, even assuming continuous scalability of any of the IMDGs tested, it

would take them several nodes just to reach the performance of TMM. For example, in the

5% write transactions workload, Infinispan would need 18 nodes of 4 cores each to reach

the performance of TMM in a single 48-core machine. Notice that the solution to increase
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the number of cores per node does not seem to help the IMDGs, as seen by their single-node

performance. Taking into account that the recent trend has been to include many cores in a

single processor, TMM seems a good fit for upcoming hardware.

Using a single commit lock helps to keep the design of TMM simple and, apparently, it

is an acceptable compromise between improving performance and providing strong consis-

tency. Nevertheless, it represents a naive solution for the clustered environment. Moreover,

the requirements of some applications may prevent them from running in a single node, thus

requiring a clustered deployment. In the next two chapters, I focus on improving the perfor-

mance of TMM for the clustered environment, by providing an alternative design that enables

the commit of write transactions to proceed in parallel with others. First, this requires me

to redesign the JVSTM alone to make it nonblocking, which I do in Chapter 4, and then to

revisit the ideas from the current chapter to design a new nonblocking middleware extension,

which I do in Chapter 5.
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4Lock-free JVSTM

The design of the JVSTM allows it to excel in read-intensive workloads [Carvalho et al., 2008],

but raises doubts on its applicability to other types of workloads, where the percentage of

time spent committing write transactions increases. Even though during the execution of

a write transaction reads and writes of transactional locations are wait-free, the commits

of these transactions serialize on a single lock, thereby having the potential of impairing

severely the scalability of a write-intensive application.

In this chapter I address this problem by presenting and discussing the implementation

of a new and efficient lock-free JVSTM that improves scalability while maintaining the exact

same properties for reads, as before. This nonblocking JVSTM allows commits to proceed

in parallel during the validation phase, and it resorts to helping from threads that would

otherwise be waiting to commit, during the write-back phase. Additionally, I describe a new

GC algorithm for the JVSTM, designed to eliminate an existing infrastructural bottleneck.

I perform an evaluation of the new version by comparing it with the lock-based version,

as well as with other top-performing STMs, using a test machine with 208 real processor

cores.

This chapter provides the following content:

• A discussion of the factors that can affect the performance of the lock-based implemen-

tation, motivating for a nonblocking design.

• A new lock-free algorithm for the commit phase.

• A new GC algorithm that asynchronously cleans up unreachable versions and reduces

the overhead of starting/finishing a transaction.

• A performance evaluation, comparing the new JVSTM against the lock-based JVSTM

and other top-performing STMs.

• A discussion on the related work.
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4.1 Motivation for a New Commit Algorithm

The JVSTM was initially developed to support read-heavy applications, in which the num-

ber of read-only transactions corresponds to more than 95 percent of the total number of

transactions executed. As such, the other 5 percent have a lower probability of overlapping

in time and, with the commit phase taking only a fraction of the entire transaction duration,

there is an even lower chance for contention in the commit lock. Therefore, lock contention

was expected to be low and evaluation of the single-lock approach showed good performance

results in the workloads to which it was applied [Cachopo, 2007; Carvalho et al., 2008].

Moreover, an algorithm based on a single lock is simpler to implement and to reason about

than alternative approaches, such as fine-grained locking and lock-free. These facts put

together justified the initial use of the single-lock approach. Nevertheless, factors such as

the percentage of write transactions, the number of concurrent transactions, and the du-

ration of the commit phase can affect the performance of the JVSTM. Next, I present some

arguments in favor of a nonblocking implementation.

4.1.1 Locks do not Scale

Different applications may have different workloads regarding read and write transactions

and may execute many write transactions in a short period of time, especially in the case of

CPU-intensive applications. In turn, this may highly increase the probability of having more

than one write transaction trying to commit concurrently. Even if this may not be an issue

for machines with a small number of cores, many-core machines are an emerging reality and

the number of cores available at an affordable price is growing. It is reasonable to assume

that, in a many-core machine, the higher contention on the lock will degrade performance

significantly. For example, considering a rate of only 5 percent write transactions, and as-

suming that all transactions have the same duration, whereas a fully used 20-core computer

will be dealing, on average, with one write transaction at any given time, a 100-core computer

is expected to be dealing with five concurrent write transactions. Even a small increase in

the percentage of write transactions can greatly increase contention.

4.1.2 Lock Convoying

Lock convoying [Blasgen et al., 1979] is a phenomenon that occurs when multiple threads

contend repeatedly for the same lock. Typically, this leads to the additional overhead of
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repeated context switches and causes overall performance degradation. In JVSTM, this

effect is worsened when a transaction needs to restart due to conflicts, because during its

re-execution, it will have a higher change of seeing more transactions committing ahead of

it, thus increasing the chance for a second conflict to occur.

For any given workload that includes conflicting transactions, the more transactions run

concurrently, the higher the probability that a conflict will occur. However, it is not so

obvious that this situation may be aggravated when running N transactions in fewer that N

processors.

As I have mentioned before, a write transaction has a conflict if some value that it read

has already changed when it tries to commit. So, intuitively, the probability of conflict in-

creases with the length of the transaction and the number of concurrent transactions, but it

should not depend on the number of available processors, because having fewer processors

should slow down all transactions proportionally and, thus, maintain the probability of hav-

ing transactions committing during the execution of another transaction. Yet, this intuition

is assuming that all transactions can proceed without interference. Once a transaction has

to wait for the commit lock then the assumption is no longer true.

The JVSTM’s commit operation uses a fair locking policy. This means that the lock is

granted to the longest waiting transaction, i.e., transactions obtain the lock in the temporal

order by which they requested it. Suppose now that a write transaction T1 wants to commit,

and attempts to get the lock. If another transaction T0 already holds the lock, then T1 has to

wait. The more transactions there are running, the less processor time T0 will have to

complete its critical section and release the lock. Thus, there is a higher probability that

other write transactions T2, . . . , Tn will queue up for the lock as well, because they will be

given processor time to execute, whereas T1 is still waiting. Consider that when T1 finally gets

the lock it fails validation, so that it will immediately release the lock and restart. Releasing

the lock and restarting is extremely likely to be much faster than committing T2 (which is the

next in line to hold the lock), thus T1 will restart and use the version number of T0’s commit

(the most recent at the time of the restart). T1’s next commit attempt will be necessarily

after T2, . . . , Tn commits have been processed, some of which may succeed. In practice, the

span of T1 in terms of versions from its restart up to its commit, i.e., the time length during

which other transactions may commit and lead to yet another conflict in T1, will effectively

be greater than if it had been able to run without lock interference. This was caused by the

amount of time that it had to wait for the lock until it could decide that it had to restart,

which provided a chance for more transactions to pile up on the commit lock’s queue.
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Figure 4.1: Demonstration of the poor scalability of lock-based commit. As the
duration of the commit operation increases, the scalability of the application becomes
increasingly limited.

In summary, under the circumstances described above, if a transaction restarts, then it

faces a higher probability of restarting again.

4.1.3 Increased Lock Duration

During the commit phase, changes have to be written back to their boxes in memory. In this

dissertation, I use the JVSTM on top of a data repository, which requires that changes are

also written to such repository during the commit. Depending on the repository used, this

additional operation can take up to several orders of magnitude longer than just writing back

to memory.

One of the assumptions for enabling the use of locks in the first version of the JVSTM

was that the commit is a short-duration operation, meaning that the commit lock would be

released quickly enough not to cause much contention. The usage scenarios that I target

break this assumption. It is even likely for the commit phase to become longer than the

body of the transaction, due to the need of remote communication when writing back to the

repository, thus dominating the total transaction time. As a result, the increased duration

of the critical section contributes to the exacerbation of the other problems that I described

as a motivation for a new commit algorithm in the previous subsections.
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To illustrate the potential problems with the lock-based approach, I executed a micro-

benchmark application—the Array, which will be described in Section 4.4.1.1 on page 121—

where the time to commit was artificially altered with the introduction of active delays, while

the lock was being held by the committer, in order to simulate a longer commit duration,

hypothetically caused by the interaction with a data repository. The results shown in Fig-

ure 4.1 on page 98 were obtained running to completion 104 read-write transactions with

almost no conflicts (each transaction reads 103 memory locations and writes to 10 out of 106

possible memory locations). The experiment used from 1 to 32 concurrent threads in the

same 48-core machine that was already described in Section 3.8.1 on page 79. Each plotted

line was obtained adding different delays to the commit operation, namely 0ms, 0.5ms and

1ms per commit. The results show that increasing the commit time naturally leads to an

increase in the time that it takes for the single-threaded executions to complete. But the

more relevant results are that, in all cases tested, adding more concurrent threads, improves

the performance up to a certain number of threads, and then performance remains constant.

This is because the executions are becoming serialized by the lock. The longer the delay in-

troduced by the lock, the earlier cease the improvements obtained by adding more threads.

I shall revisit this workload in Section 4.4 on page 120 using the lock-free JVSTM to show

the scalability of the new algorithm.

Next, I describe the two main modifications that I apply to the JVSTM: First a complete

redesign of the commit algorithm and, second, a new GC algorithm. The former is required to

turn the JVSTM into a completely lock-free STM. The latter, addresses a performance bottle-

neck that only manifests under certain workloads with a high thread count; its need only sur-

faced after experimentally testing the JVSTM in a hardware that enabled for a high level of real

parallelism. I describe these two new algorithms in detail in the following sections. Their fully

working implementation is available at https://github.com/inesc-id-esw/jvstm

from commit with SHA-1 checksum 754692dd723ab98e16269911910a420c73c2b5c9.

4.2 Lock-Free Commit

In this section I describe the new lock-free commit algorithm that replaces the existing lock-

based implementation. Conceptually, the algorithm contains the same three steps as before:

(1) validate the read set, (2) write back the write set, and (3) make the commit visible to other

transactions. In the following subsections I explain how each step is now accomplished in a

manner that ensures the properties of lock-freedom.
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4.2.1 Validation

The original lock-based commit algorithm uses snapshot validation, which, for each element

in the read set, checks whether such element’s most recent version is still the same that was

read during the transaction. Yet, validation can also be performed incrementally by checking

the write sets of all transactions that have committed versions greater than the one this

transaction started with (delta validation). Suppose that transaction T started in version

v1. For any transaction Ti that committed a version greater than v1, if any element in the

write set of Ti is in the read set of T , then T cannot commit, because of a conflict.

By removing the commit lock and, consequently, eliminating any form of dependency

between transactions that are committing concurrently, it is now possible that, while T is

validating itself, other transactions are also validating themselves, aiming to commit as well.

It is, therefore, necessary to order the commits in such a way that each transaction can finish

validation and be sure that it is valid to commit.

To do so, I use and extend the functionality of the ATR list that already exists in the

JVSTM. The ATR list holds records that contain information about a write transaction that

has already committed. To support the delta validation, I extend this list to also include

valid, but not yet fully committed records. Thus, a transaction that can get an entry in

this list effectively establishes its commit order and, as such, its commit version. The code

in Listing 4.1 on page 101 shows how a transaction concurrently validates its read set in a

lock-free way.

Each write transaction now has two transaction records: The original activeTxRecord,

which points to the record that represents the version in which the transaction started;

and, the commitTxRecord, which is the record that is created to represent the transac-

tion’s own commit. To be valid, a transaction needs to check for an empty intersection

between its read set and the write set of each record from the activeTxRecord onward.

This is what the method validate(ActiveTxRecord) does: It checks all records from

the lastValid onward and it returns the last successfully validated record (or throws

a CommitException if validation fails at any point). Next, the new commitTxRecord

is created with an incremented commit version number, and the transaction’s write

set. The trySetNext(ActiveTxRecord) is a CAS operation that atomically sets the

commitTxRecord as the next valid record after the lastValid. This is a tentative oper-

ation that only succeeds if the next record is still unset. Otherwise, it means that another

transaction has won the race for that position, in which case validation resumes from the
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1 class Transaction {
2 ...
3 void validateCommitAndEnqueue() {
4 ActiveTxRecord lastValid = this.activeTxRecord;
5 do {
6 lastValid = validate(lastValid);
7 this.commitTxRecord = new ActiveTxRecord(lastValid.txNumber+1,
8 this.writeSet);
9 } while (!lastValid.trySetNext(this.commitTxRecord));

10 }
11

12 ActiveTxRecord validate(ActiveTxRecord lastChecked) {
13 ActiveTxRecord recordToCheck = lastChecked.getNext();
14

15 while (recordToCheck != null) {
16 if (!this.readSet.isEmpty() && !validFor(recordToCheck)) {
17 throw new CommitException();
18 }
19 lastChecked = recordToCheck;
20 recordToCheck = recordToCheck.getNext();
21 }
22 return lastChecked;
23 }
24

25 boolean validFor(ActiveTxRecord recordToCheck) {
26 for (VBox write : recordToCheck.getWriteSet()) {
27 if (this.readSet.contains(write)) {
28 return false;
29 }
30 }
31 return true;
32 }
33 }
34

35 class ActiveTxRecord {
36 ...
37 boolean trySetNext(ActiveTxRecord next) {
38 return next.compareAndSet(null, next);
39 }
40 }

Listing 4.1: The lock-free validation algorithm.
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last known valid record. Thus, commit order is defined by the order in which transaction

records enter the ATR list. All transactions that are in the process of committing must obtain

a position in this list, after validating themselves. Even if not all transactions are already

written back, being in this list enables future committing transactions to check their validity

against all those that are already queued for a sure commit.

Notice that this validation algorithm is lock-free: Even though a single transaction may

continuously fail to get a commit position, such fact implies that the transactional system

as a whole must be making progress, i.e., other transactions are in fact validating and

queueing their commit records. Other than the possible starvation caused by the other

transactions progressing, there is no mechanism that prevents a transaction from validating

itself, regardless of the state of the other transactions.

Additionally, if no commits occur between the start and the commit of a transac-

tion that is attempting validation, then validation is trivial, because that transaction’s

activeTxRecord is the most recent one and getNext() returns null, allowing for the

method validate(ActiveTxRecord) to quickly return without having to perform any

iteration. Then, the committing transaction only needs to enqueue its commit record with

the CAS.

4.2.2 Write Back

Any transaction that has been successfully validated by the previous algorithm, obtains a

commit version, which is represented by the commit record that is placed in the commit

queue. Figure 4.2 on page 103 shows an example of a possible state for the ATR list. Trans-

actions 9 and 10 have already committed,24 whereas transactions 11 to 13 are valid but not

yet written back. At this point in time, any new transaction that begins will see the state that

corresponds to version 10, because it is the last committed version. The figure also shows

the two transaction records in use by transaction 12 (thus, assuming that transaction 12

started before transaction 10 had committed).

Writing back each value in the write set consists in adding a new VBoxBody to the

corresponding VBox. The new VBoxBody is placed at the head of the list of bodies, pointing

to the previous head. This new body contains the version obtained during validation and the

value written by the transaction.

24The commit status of a write transaction is stored in a property of its commit record.
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Figure 4.2: The ATR list extended to hold write transactions that are valid but not
yet written back.

The JVSTM requires that, within each VBox, the list of versions is kept sorted by de-

creasing version number. This is necessary for correctness, but it also allows the reads to be

fast, as the most often requested value is expected to be the first. If two valid transactions

attempt to write back concurrently to the same location, then their writes need to be ordered

according to their commit version. This problem did not exist in the lock-based version,

because then only one transaction could be in the write back phase, at any given time.

Within the same transaction, the write back of each value can execute concurrently

without synchronization, because each value is written to a different location. It is even

possible to consider concurrent write backs between different transactions, as long as the

written locations do not intersect. However, the latter adds complexity and cost to the

algorithm: It requires the ability to determine whether two write sets intersect, which is an

expensive operation.

To ensure that write backs to the same location are performed in order, I choose to write

back only one transaction at a time, beginning with the oldest valid transaction that is yet to

be written back (valid but not fully committed). The algorithm ensures that each transaction

is completely written back before proceeding to the next in line. Each valid transaction

will help to write back, starting from the oldest valid transaction up to, and including,

itself. This way, instead of blocking, transactions that want to commit can be helpful and

increase the overall write back throughput. Listing 4.2 on page 104 presents the method

ensureCommitStatus() that is the entry point for the write back phase. This method,

which is invoked immediately after a successful validation, is responsible for ensuring that

all transactions up to this are written back and fully committed, by the end of the method’s

execution.

103



Chapter 4 · Lock-free JVSTM

1 class Transaction {
2 ...
3 void ensureCommitStatus() {
4 ActiveTxRecord recToCommit = LAST_COMMITTED_RECORD.getNext();
5 while (recToCommit.txNumber <= this.commitTxRecord.txNumber) {
6 helpCommit(recToCommit);
7 recToCommit = recToCommit.getNext();
8 }
9 }

10

11 void helpCommit(ActiveTxRecord recToCommit) {
12 if (!recToCommit.isCommitted()) {
13 WriteSet writeSet = recToCommit.getWriteSet();
14 writeSet.helpWriteBack(recToCommit.txNumber);
15 finishCommit(recToCommit);
16 }
17 }
18 }

Listing 4.2: The method ensureCommitStatus() is the entry method for the
write back phase. When it finishes it is guaranteed that all transactions up to, and
including, the target transaction (this) have finished their commits.

The method ensureCommitStatus() starts by reading the shared reference

LAST_COMMITTED_RECORD to get the next record to commit. Each iteration of the loop

ensures the commit of the given record, i.e. it writes back the corresponding write set and

marks the associated transaction as committed. The values to write back are evenly split

among several buckets of approximately the same size each. This splitting is done so that

the work can be distributed by any concurrent helpers. The write set itself holds the buck-

ets, so helpCommit(ActiveTxRecord) delegates the write back operation to the write set

instance, configuring it with the version number to use (line 14 of Listing 4.2).

The method helpWriteBack(int), shown in Listing 4.3 on page 105, picks a random25

bucket to start, and then iterates through each bucket once. For each bucket, it checks

whether that bucket is already written back, by checking the bucketsDone array. This

array contains an AtomicBoolean for each bucket that indicates whether the values in the

corresponding bucket are already written back. Any helping transaction may find that some

buckets are already written back, if some other transaction has helped. For those buckets

that are not yet written back, this helping transaction will attempt to write each value to

25There is one instance of the randomizer class per thread, to eliminate contention on the random number
generator.
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1 class WriteSet {
2 ...
3 void helpWriteBack(int newTxNumber) {
4 int finalBucket = random.nextInt(this.nBuckets);
5 int currBucket = finalBucket;
6 do {
7 if (!this.bucketsDone[currBucket].get()) {
8 this.bodiesPerBucket[currBucket] =
9 writeBackBucket(currBucket, newTxNumber);

10 this.bucketsDone[currBucket].set(true);
11 }
12 currBucket = (currBucket + 1) % this.nBuckets;
13 } while (currBucket != finalBucket);
14 }
15

16 List writeBackBucket(int bucket, int newTxNumber) {
17 List newBodies = new LinkedList();
18 for (BucketEntry be : this.buckets[bucket]) {
19 VBoxBody newBody = be.vbox.commit(be.value, newTxNumber);
20 newBodies.add(newBody);
21 }
22 return newBodies;
23 }
24 }

Listing 4.3: Write back algorithm for a single write set.
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1 class VBox {
2 ...
3 VBoxBody commit(Object newValue, int txNumber) {
4 VBoxBody currHead = this.body;
5 VBoxBody existingBody = currHead.getBody(txNumber);
6

7 if (existingBody == null) {
8 VBoxBody newBody = new VBoxBody(newValue, txNumber, currHead);
9 existingBody = CASbody(currHead, newBody);

10 }
11 return existingBody;
12 }
13

14 VBoxBody CASbody(VBoxBody expected, VBoxBody newBody) {
15 if (compareAndSwapObject(this, FIELD_OFFSET_BODY,
16 expected, newBody)) {
17 return newBody;
18 } else {
19 return this.body.getBody(newBody.version);
20 }
21 }
22 }

Listing 4.4: Write back algorithm for each VBox.

its respective VBox, and mark the bucket as done. The method writeBackBucket(int,

int), iterates through the elements of the bucket invoking commit(Object, int) on

each VBox with the value and version to commit.

Listing 4.4 presents the methods required at the VBox level. The method

commit(Object, int) handles the creation of the new VBoxBody and inserts it at the

head of the list of bodies. Due to concurrency in the write back operation, more than

one thread can attempt to write back to the same VBox. As such, the commit(Object,

int) operation starts by searching (via the method getBody(int)) whether there is al-

ready a VBoxBody with the required version. If such body is found, then it means that

another helper transaction has already performed the commit of this value to the box. If the

body is not found, then a new VBoxBody is created and the method CASBody(VBoxBody,

VBoxBody) attempts to install it. This operation tries to replace the VBox’s current body

attribute with the new one, using a single CAS attempt.26 If it succeeds, it returns the new

26The operation compareAndSwapObject(Object obj, long offset, Object expected,
Object newValue) atomically replaces expected with newValue, if the field identified by offset in
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head of the list. It if fails, then it is because a concurrent helping transaction succeeded,

in which case it looks up the required VBoxBody to return. Recall that transactions are

written back in order, so a failed CAS must necessarily mean that the required write already

occurred.

The return value of the method commit(Object, int) is always the VBoxBody in-

stance that corresponds to the value that should be written back, regardless of whether it

was this helper transaction that actually did the write back. Each of these bodies is collected

into the newBodies list (line 20 of Listing 4.3 on page 105), which, in turn, is stored in the

bodiesPerBucket array, in the position corresponding to the bucket being written back

(line 8). In Section 4.3 on page 112, I describe how these lists are used by the new GC

algorithm to eliminate old versions from memory.

Finishing a commit requires publicizing the changes globally, and it must be done only

after all values are in place. According to the Java Memory Model [Manson et al., 2005], any

write to memory performed before a volatile write of a given location x will necessarily be seen

by other threads, as long as they first perform a volatile read of x and the value written for

x is seen. The setting of each AtomicBoolean in the bucketsDone array entails volatile

write semantics, thus when another thread sees that a bucket is done (issuing a volatile

read), it will surely be able to see the values of that bucket written back.

At the end of helpWriteBack(int) the helper transaction can be sure that all buckets

of this write set are written back, because either this transaction wrote them itself or checked

that some other transaction did it. So, the helper is sure that the helped transaction can be

safely committed.

The write back phase is wait-free, because any transaction that enters this phase is

certain to finish it in a finite number of steps, in spite of other threads executing any other

code concurrently. There are three iterations:

• In the method ensureCommitStatus(): The number of iterations performed in

this loop is bounded, because there is a finite number of records between the

LAST_COMMITTED_RECORD and the transaction’s own commitTxRecord, which was

enqueued during the validation phase. Newer records that may enter the queue are

added after the commitTxRecord and will not be considered in the loop.

• In the method helpWriteBack(int): The number of buckets (nBuckets) is fixed

object obj contains the value expected, and it returns whether the replacement occurred.
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per write set and the loop only passes through each bucket once.

• In the method writeBackBucket(int, int): The number of entries per bucket is

limited and defined when the bucket is created. There is only one pass per entry.

Finally, the CAS to set the new VBoxBody may fail, but in that scenario the written back

value is already there, so the operation does not have to be retried. Also, when the CAS fails,

finding the written back value to return is a bounded search, because the list of versions

may only grow at the head, whereas the search is performed in the opposite direction.

4.2.3 Finishing a Commit

All transactions that help to write back a given transaction must try to finish that transaction,

because no transaction really knows whether it was the first one to fully complete the write

back, and it cannot depend on another to do it. Nevertheless, after completing the write back

operation, making the changes globally visible is a trivial operation with two steps:

1. Set the commit status flag on the commit record.

2. Set the shared reference LAST_COMMITTED_RECORD to the record just committed.

These steps are performed in the method finishCommit(ActiveTxRecord), which

is shown in Listing 4.5 on page 109. The linearization point occurs when setting the commit

flag. This is a volatile write to a boolean variable that is read by future transactions and,

thus, guarantees that everything written by this transaction is visible by future transactions.

The update of the shared reference to the last committed record is just a helping operation

to reduce the search effort of new transactions.

The finishCommit(ActiveTxRecord) operation has no synchronization, so it is

possible that thread interleaving will cause for some late thread to actually set the

LAST_COMMITTED_RECORD reference back to a previously committed record, when there

is already a more recent committed record. For this reason, whenever a new transaction

begins, it obtains the most recent version from the LAST_COMMITTED_RECORD, and then it

iterates forward, looking for the most recent committed record. Recall that a record enters

the list immediately after validation succeeds, but before its write back phase, whereas in the

lock-based algorithm, the list was updated, in mutual exclusion, only after each successful

commit.
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1 class Transaction {
2 ...
3 void finishCommit(ActiveTxRecord recToCommit) {
4 recToCommit.setCommitted();
5 LAST_COMMITTED_RECORD = recToCommit;
6 }
7 }

Listing 4.5: Finishing a commit and publishing changes.

4.2.4 Validation Revisited

As mentioned in Section 4.2.1 on page 100, validation of a transaction T can be performed

in two different ways:

• Snapshot validation, which checks if T ’s read set is still up to date with the current

global state. This corresponds to the original validation used in the lock-based commit.

• Delta validation, which incrementally checks each write set committed since T started

and looks for an intersection with T ’s read set. This is the validation introduced for the

new commit algorithm.

With regard to performance, either validation technique has advantages and shortcom-

ings: Snapshot validation depends solely on the size of the read set. The time it takes to

validate a read set is proportional to its size. Conversely, delta validation is independent

of the size of the read set. This holds true as long as the lookup function that determines

whether any given VBox is contained in the read set can be executed in constant time. How-

ever, delta validation depends on the size and number of all the other write sets committed

while the transaction executed. So, delta validation will tend to perform better when the av-

erage size of the list of write sets to iterate multiplied by the average write set size is smaller

than the average size of a read set to validate.

Whereas the size of the write set is application dependent, the number of the write sets

to iterate grows with the number of write transactions. As the number of concurrent trans-

actions increases, so does the cost of delta validation. To tackle this problem, I propose a

new validation procedure, which mixes the two techniques. This mixed validation algorithm

is presented in Listing 4.6 on page 110.
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1 class Transaction {
2 ...
3 void validate() {
4 ActiveTxRecord lastSeenCommitted = helpCommitAll();
5 snapshotValidation(lastSeenCommitted.txNumber);
6 validateCommitAndEnqueue(lastSeenCommitted);
7 }
8

9 ActiveTxRecord helpCommitAll() {
10 ActiveTxRecord lastSeenCommitted = LAST_COMMITTED_RECORD;
11 ActiveTxRecord recToCommit = lastSeenCommitted.getNext();
12

13 while (recToCommit != null) {
14 helpCommit(recToCommit); //defined on Listing 4.2 on page 104
15 lastSeenCommitted = recToCommit;
16 recToCommit = recToCommit.getNext();
17 }
18 return lastSeenCommitted;
19 }
20

21 void snapshotValidation(int committedTxNum) {
22 int myReadNumber = getReadVersion();
23

24 if (committedTxNum == myReadNumber) { // immediately valid
25 return;
26 }
27

28 for (VBox read : this.readSet) {
29 if (read.body.version > myReadNumber) {
30 throw new CommitException();
31 }
32 }
33 }
34

35 // Adapted from validateCommitAndEnqueue(), first line excluded.
36 // (cf. line 3 of Listing 4.1 on page 101)
37 void validateCommitAndEnqueue(ActiveTxRecord lastValid) {
38 ActiveTxRecord lastValid = this.activeTxRecord;
39 ...
40 }
41 }

Listing 4.6: The mixed validation. The operation validateCommitAndEnqueue
is adapted from Listing 4.1 on page 101, by removing the first line: The algorithm is
the same, except that now it takes the last valid record as a parameter.
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Before any validation attempt, the transaction first helps to write back all pending com-

mits already queued. The method helpCommitAll() (line 9 of Listing 4.6 on page 110)

is similar to the method ensureCommitStatus() (line 3 of Listing 4.2 on page 104), ex-

cept that it helps to commit all queued records and it returns the last one that it helped to

commit. Afterwards, a snapshot validation is performed. Notice that, because there is no

synchronization, it is possible for other concurrent commit validations to occur, thereby in-

creasing the tail of the ATR list beyond the lastSeenCommitted record. Nevertheless, the

list of committed versions on each VBox surely must contain at least all the commits up to

lastSeenCommitted. Thus, snapshot validation, at least, validates up to that point. But,

even if snapshot validation succeeds, it is still necessary to ensure a valid commit position,

and account for the possibility of concurrent commits meanwhile. So, the last step is to

run the delta validation, but this time only from the lastSeenCommitted record onwards.

The new validateCommitAndEnqueue(ActiveTxRecord) method is adapted from the

original validateCommitAndEnqueue() (line 3 of Listing 4.1 on page 101) to receive the

starting record, instead of using activeTxRecord.

According to experimental observation, read sets tend to be several times larger than

write sets, even though this difference is highly dependent on each application’s read and

write patterns. As such, even though the mixed validation algorithm may be slower for a low

number of transactions, it will scale much better, because it keeps the list of write sets to

check small. Moreover, the initial step, in which the transaction helps to write back, is not

wasted work as this would have to be done by some transaction anyway.

The method helpCommitAll() is lock-free, because a helper transaction may

remain forever helping to commit newly enqueued transactions. The method

snapshotValidation(int) is wait-free, because its loop is bounded by the size of the

read set to validate. The method validateCommitAndEnqueue(ActiveTxRecord) is

lock-free for the same reasons as validateCommitAndEnqueue(): Only the successful

enqueueing of another transaction can cause a helper to have to retry. So, using the mixed

validation algorithm, the validation phase remains lock-free as it was when using only the

delta validation described in Section 4.2.1 on page 100.

In Listing 4.7 on page 112, I present the final commit algorithm, which combines the

three commit phases that I have described. Taking into account the progress guarantees of

each phase, the resulting algorithm is lock-free.
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1 class Transaction {
2 ...
3 void commit() {
4 if (isWriteTransaction()) {
5 validate();
6 ensureCommitStatus();
7 }
8 }
9

10 boolean isWriteTransaction() {
11 return !writeSet.isEmpty();
12 }
13 }

Listing 4.7: The top-level method in the lock-free commit.

4.3 Asynchronous Elimination of Unused Versions

After replacing the original commit algorithm with the one that I have just described, all

operations that the JVSTM implements are now nonblocking and they ensure system-wide

progress—the JVSTM is completely lock-free. This includes the original GC algorithm for

removing old versions, which I overviewed in Section 3.3.1 on page 38. However, during the

initial tests that I performed while developing the lock-free commit algorithm, I discovered

a performance bottleneck in the GC algorithm, which still prevented the scalability of the

transactional system. In the following I present the problem and describe the replacement

GC algorithm that I developed to address the problem.

In short, the problem is that the shared counter used in each ATR does not scale when

used intensively. The following factors contribute to the bottleneck:

• Very short transactions.

• Read-dominated workloads.

• Increased number of concurrent transactions in many-core machines.

Given that every transaction increments/decrements these counters at the begin-

ning/end, the more transactions there are, the more concurrent updates there will be to

the counters, which is worsened when the number of transactions that can effectively run in

parallel increases. Also, if the transactions are short, the percentage of time spent beginning
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and finishing increases, when compared to the time spent in the transaction’s body. Most

importantly, in scenarios where read-only transactions prevail, most transactions will be

using the same version, thus trying to modify the same counter. I verified, experimentally,

that the current mechanism for cleaning old versions causes a performance degradation in

read-dominated scenarios, when there are above 20 short transactions running in parallel.

Taking this into account, I developed a new algorithm to eliminate unused versions, which

runs in a separate thread and still uses the ATRs, but does not require the records to have any

counters. The general idea is to inform the GC task about all transactions currently running,

and what is the record currently in use by each of these transactions. With this information,

the algorithm can identify asynchronously which versions are no longer accessible, and

eliminate them. Instead of keeping an updated list with an entry per transaction, the system

keeps a list with an entry per thread: This design is best under the assumption that the

creation of a new thread occurs fewer times than the creation of a transaction, and leverages

on the fact that each thread executes transactions sequentially. In the rest of this section I

present the details for the lock-free GC algorithm.

The TxContext, shown in Listing 4.8 on page 114, is a per-thread transaction context

that holds a reference (oldestRequiredRecord) to the record currently in use by the

thread’s running transaction. Each thread’s context is accessible via the thread-local variable

threadTxContext. There is also a shared list of all existing contexts (allTxContexts):

The GC task (described ahead) repeatedly iterates through this list, identifying which is the

oldest record in use by any transaction, and cleaning all records from the last cleaned up to

the oldest in use.27 Each context also contains a Java WeakReference to the thread that

created it (owner). This reference allows the GC task to detect when a thread has died, so

that unnecessary contexts can be removed from the shared list.

Adding a new TxContext to the shared list is a simple add operation on a nonblocking

list. This needs to be done only once for every new thread that starts a transaction for the

first time and is automatically guaranteed in the initialization method (initialValue())

of the threadTxContext. Afterwards, each thread reuses its own context, regardless of

the transaction that is being executed in the thread. When a new transaction starts,

it determines its read version, and it must set the corresponding ATR in the context’s

oldestRequiredRecord. When a transaction finishes it must set that record to null.

This is fundamental to allow the GC algorithm to compute which is the oldest record in use—

27The shared list of contexts is initially populated with a context that is not associated with any thread, so that
list is never empty, and the GC algorithm will always keep at least one context in the list.
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1 class TxContext {
2

3 // A TxContext per thread
4 static final ThreadLocal<TxContext> threadTxContext =
5 new ThreadLocal<TxContext>() {
6 @Override protected TxContext initialValue() {
7 TxContext newCtx = new TxContext(Thread.currentThread());
8 allTxContexts.enqueue(newCtx);
9 return newCtx;

10 }
11 };
12

13 // All TxContexts available to the GC task.
14 // The GC algorithm requires this list to be non-empty,
15 // so the first context is special and is explicitly added.
16 static TxContext allTxContexts = new TxContext(null);
17

18 volatile ActiveTxRecord oldestRequiredRecord;
19 WeakReference<Thread> owner;
20 TxContext next;
21

22 TxContext(Object owner) {
23 this.owner = new WeakReference(owner);
24 }
25

26 void enqueue(TxContext ctx) {
27 TxContext current = this;
28 while (true) {
29 for (; current.next != null; current = current.next);
30

31 if (compareAndSwapObject(current, FIELD_OFFSET_NEXT,
32 null, ctx)) {
33 return;
34 }
35 }
36 }
37 }

Listing 4.8: The TxContext. Its main goal is to keep a per-thread registry of the
oldest record required by the transaction running in each thread.
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1 class GCTask implements Runnable {
2 ...
3 ActiveTxRecord lastCleanedRec;
4

5 GCTask(ActiveTxRecord lastCleanedRec) {
6 this.lastCleanedRec = lastCleanedRec;
7 }
8

9 void run() {
10 while(true) {
11 ActiveTxRecord rec = findOldestRecordInUse();
12 cleanUnusedRecordsUpTo(rec);
13 }
14 }
15 }

Listing 4.9: Entry point for JVSTM’s new GC algorithm.

the oldest required record—by all transactions.

Due to the concurrency between the GC algorithm and the start of a new transaction, after

setting the oldestRequiredRecord a transaction must check again whether there is a

newer record, and, if so, upgrade to it, simply by setting it as the oldestRequiredRecord.

This double-check sequence is required to ensure that a transaction never uses a record that

may have been removed concurrently by the GC. Notice that a write transaction that commits

will mark its commitTxRecord as committed (line 4 of Listing 4.5 on page 109), before

setting the oldestRequiredRecord to null. This ensures that, if the GC task decides

that a record is inaccessible, then new transactions will have to see the newer record, and

use it. The GC algorithm is summarized in Listing 4.9.

The GC task is launched in a daemon thread that runs an infinite loop: It first finds

the oldest record in use, and then it cleans all records up to that record. The GC task

is created before the JVSTM begins to process transactions, so the lastCleanedRec is

initialized with a sentinel record that represents the initial state of the transactional system.

The lastCleanedRec will advance as the GC cleans up old records.

The algorithms for findOldestRecordInUse() and cleanUnusedRecordsUpTo()

are shown in Listing 4.10 on page 116, and they depend on the following invariant:

Apart from changing to null, the oldestRequiredRecord for each con-
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1 class GCTask implements Runnable {
2 ...
3 ActiveTxRecord findOldestRecordInUse() {
4 ActiveTxRecord alreadyCommitted = LAST_COMMITTED_RECORD;
5 for (ActiveTxRecord next = alreadyCommitted.getNext();
6 (next != null) && next.isCommitted();
7 next = next.getNext()) {
8 alreadyCommitted = next;
9 }

10

11 ActiveTxRecord oldRec_1 = getOldestRecord(Integer.MAX_VALUE);
12 if (oldRec_1 == null) {
13 return alreadyCommitted;
14 }
15

16 ActiveTxRecord oldRec_2 = getOldestRecord(oldRec_1.txNumber);
17 return (oldRec_2 != null) ?
18 oldRec_2 : oldRec_1;
19 }
20

21 ActiveTxRecord getOldestRecord(int minVersion) {
22 ActiveTxRecord oldRec = null;
23 TxContext currentCtx = TxContext.allTxContexts;
24

25 while (currentCtx != null) {
26 ActiveTxRecord rec = currentCtx.oldestRequiredRecord;
27 if ((rec != null) && (rec.txNumber < minVersion)) {
28 minVersion = rec.txNumber;
29 oldRec = rec;
30 }
31 currentCtx = currentCtx.next;
32 }
33 return oldRec;
34 }
35

36 void cleanUnusedRecords(ActiveTxRecord upToThisRec) {
37 while (this.lastCleanedRec.txNumber < upToThisRec.txNumber) {
38 final ActiveTxRecord toClean = this.lastCleanedRec.getNext();
39 this.lastCleanedRec = toClean;
40 cleanersThreadPool.execute(new Runnable() {
41 public void run() {
42 toClean.clean();
43 }});
44 }
45 }
46 }

Listing 4.10: Algorithm for detection and cleaning of unused records.116
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text never changes backwards—that is, after being set to a record Ra the

oldestRequiredRecord will no longer be set to another record Rb, such

that Rb.txNumber < Ra.txNumber.

This invariant ensures the GC that once a transaction has set a record R in its context it

will never need to access another record older than R. This is guaranteed to be so, because a

transaction always starts on the latest committed record and never downgrades to an older

version. Therefore, after a transaction T1 finishes, any future transaction T2 that executes on

the same thread will necessarily use a version that is not older than T1.getReadVersion().

With the invariant in mind, the method findOldestRecordInUse() starts by comput-

ing the most recent record alreadyCommitted (lines 4 to 9 of Listing 4.10 on page 116) by

reading the current LAST_COMMITTED_RECORD and advancing as much as possible through

the list. Should the remainder of the method fail to find any record, it is safe to clean up

to the alreadyCommitted record, because any new transaction will necessarily start from

that record onwards.

The search for the oldest record in use requires two passes over the list of contexts to get

the oldest record of each pass. The method getOldestRecord(int) returns the record

with the lowest txNumber from the list, or it returns null if it does not find any record in

the list of contexts with a number lower than minVersion. If the first pass returns null,

then the alreadyCommitted record is the safest point to clean up to, and the method

returns. Otherwise, a second pass is executed to ensure that, due to concurrency, it did not

miss a thread that was starting a transaction with a record older than oldRec_1, which

could occur for any context Ci read before reading the context Cmin in which oldRec_1 was

found. Such event is only possible if Ci .oldestRequiredRecord == null. The case of

Ci .oldestRequiredRecord.txNumber < Cmin.oldestRequiredRecord.txNumber

is impossible and for Ci .oldestRequiredRecord.txNumber ≥

Cmin.oldestRequiredRecord.txNumber a second pass will never detect a record older

than Cmin, because of the invariant. The second invocation of getOldestRecord(int)

can be optimized, because actually it only needs to check the contexts up to Cmin.28 For

clarity of the algorithm, such optimization is not shown in the code in Listing 4.10 on

page 116. In the end, after the second pass, if a record older than oldRec_1 was found,

then that record is returned; otherwise oldRec_1 is the oldest.

After the identification of the oldest record in use, the method
28Any significant context ahead would be detected in the first pass.
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cleanUnusedRecordsUpTo(ActiveTxRecord) simply iterates and cleans all records

from the last one cleaned (lastCleanedRec) up to the oldest in use (upToThisRec). It

uses a pool of worker threads to do the actual cleaning work, handing off one record to

clean to each thread in the pool. Cleaning each record (line 42 of Listing 4.10 on page 116)

is performed as initially described in Section 3.3.1 on page 38: The only change required

is that the list of bodies to iterate is stored in the bodiesPerBucket array, which was

produced during the write back phase of the commit, and is accessible directly through the

record (see line 8 of Listing 4.3 on page 105).

The method getOldestRecord(int) performs an additional task, which I did not

show until now to keep the presentation of the GC simpler: Given that the method already

iterates over all contexts, I use it also to identify and remove from the list those contexts

that are no longer associated with a thread. Such removal can occur only after a thread has

been destroyed. This is detected, because the WeakReference in the slot owner becomes

null. The full algorithm for the method getOldestRecord(int) is shown in Listing 4.11

on page 119: It keeps an additional reference to the context preceding the one being iterated

and, in case it detects that the current context is no longer owned by a thread, it removes it

by updating the previous reference to point to the context after the current. The removal only

occurs if it can ensure that the list of records will not be left empty (line 10 of Listing 4.11 on

page 119).

The GC algorithm that I present here does not use counters to keep information about

which records are still required, and it executes on threads that run separate from those

running the transactions. The biggest improvement it provides is that contention is virtu-

ally eliminated when starting and finishing a transaction: Transactions just write to the

oldestRequiredRecord of the context of their own thread in addition to reading from

or writing to the LAST_COMMITTED_RECORD, which is negligible when compared to the

overheads of the previous algorithm, caused by the races to atomically update the counters.

Conversely, because it runs asynchronously with the transactions, this algorithm may not

eliminate unused versions as soon as the previous algorithm did and, therefore, it can cause

memory to be used for longer than necessary. Also, it will require more memory to maintain

the data structures required by the GC.

The GC algorithm is lock-free and all other operations of the JVSTM remain,

at least, lock-free. The entire GC algorithm is nonblocking and due to its asyn-

chronous nature, it does not interfere with the progress of the threads running trans-

actions. The exception is the first transaction that each thread executes: The trans-
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1 class GCTask implements Runnable {
2 ...
3 ActiveTxRecord getOldestRecord(int minVersion) {
4 ActiveTxRecord oldRec = null;
5 TxContext currentCtx = TxContext.allTxContexts;
6 TxContext previousCtx = null;
7

8 while (currentCtx != null) {
9 if ((currentCtx.owner.get() == null)

10 && (currentCtx.next != null)) {
11 removeCtx(previousCtx, currentCtx);
12 currentCtx = currentCtx.next;
13 continue;
14 }
15

16 ActiveTxRecord rec = currentCtx.oldestRequiredRecord;
17 if ((rec != null) && (rec.txNumber < minVersion)) {
18 minVersion = rec.txNumber;
19 oldRec = rec;
20 }
21 previousCtx = currentCtx;
22 currentCtx = currentCtx.next;
23 }
24 return oldRec;
25 }
26

27 void removeCtx(TxContext previous, TxContext toRemove) {
28 if (previous == null) { // ’toRemove’ is the first record
29 TxContext.allTxContexts = toRemove.next;
30 } else {
31 previous.next = toRemove.next;
32 }
33 }
34 }

Listing 4.11: The detection and removal of destroyed threads occurs while iterating
the contexts’ list. The code in gray is the same from Listing 4.10 on page 116.
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action will run the method initialValue() when trying to get the thread’s context

to update its oldestRequiredRecord. In turn, this will run the lock-free method

enqueue(TxContext), which can contend with other threads that are also running their

first transaction. The GC algorithm is not wait-free, because it performs iterations that may

suffer from starvation:

• In line 5 of Listing 4.10 on page 116, records are appended to the list when write

transactions commit.

• In line 25 of Listing 4.10 on page 116, contexts are appended to the list when new

threads run their first transaction.

The iteration performed in line 37 of Listing 4.10 on page 116 is bounded, and the work

performed by the threads spawned to clean each record is also bounded by the number of

bodies to clean. Nevertheless, the main GC thread does not even wait for those threads to

complete: It is a fire-and-forget mechanism.

4.4 Experimental Evaluation

In this section, I evaluate the performance of the lock-free JVSTM from two different perspec-

tives:

• First, I compare it with the original lock-based version. This evaluation shows that, as

the lock contention starts to become a problem, using the lock-free commit can improve

the overall application performance. This is best seen when the duration of the commit

amounts to a relevant part of the overall transaction.

• Second, I compare it with other top-performing STM implementations, namely LSA and

TL2, which use blocking algorithms. Here, the lock-based implementations still attain

the overall best performance, especially for a lower thread count. However, in spite of

not being the top-performer for a small number of threads, as the parallelism increases

the JVSTM improves performance whereas the others decrease, leading to an identical

performance of all STMs, in some workloads.
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4.4.1 Lock-Free Versus Lock-based JVSTM

I use three benchmarks to evaluate the scalability of the lock-free JVSTM. For each one,

I measure the overall application performance (time to complete or throughput, depend-

ing on the benchmark), the average commit time per transaction, and the total number

of transaction restarts due to conflict. These tests were executed on an Azul Systems’ Java

Appliance29 with 208 cores, running a custom Java HotSpot(TM) 64-Bit Tiered VM (1.6.0_07-

AVM_2.5.0.5-5-product), and using from 1 up to 256 threads, for both the lock-based and

the lock-free implementations of the JVSTM. I first provide a description of each benchmark

used, together with its relevant characteristics for this evaluation. Then, I present the results

and discuss them.

4.4.1.1 Description of the Benchmarks

Array. This benchmark is a custom micro-application that I designed specifically to test

the JVSTM. It is highly configurable, and very useful to stress test the JVSTM, but it does

not implement any real-world behavior. It can be configured through several execution

parameters, such as the number of transactions to execute, how many of them can run

concurrently, the number of reads and writes per transaction, the number of read-only

transactions, write transactions, and so forth. The application initializes an array of integer

transactional locations with a given size, and then executes a set of transactions that can read

from and write to random positions of the array. This benchmark is useful because the body

of a transaction can be finely tuned and comprises only transactional accesses, meaning that

the results are unaffected by complex application logic: As such, this benchmark is more

sensitive to changes in the JVSTM.

The goal is to use the Array benchmark to simulate a highly concurrent and write-

intensive scenario: Given a conflict rate sufficiently low, each transaction should have a high

probability of committing without the need to restart. To do so, I configure the application

to create an array with 106 positions. The benchmark runs to completion 104 read-write

transactions, where each transaction randomly reads from 103 positions and randomly writes

to 10 positions. In fact, as the number of concurrent transactions increases, it is expected

that the conflicts also increase, even if only slightly.

29http://www.azulsystems.com/
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Lee-TM. The Lee-TM benchmark [Watson et al., 2007] implements the Lee algorithm, ap-

plied to automatic circuit routing and it measures how long it takes to lay down tracks on

a circuit board. Each iteration of the algorithm—laying a track between two points—has two

phases: In the expansion phase it performs a breadth-first search to mark all positions with

their relative distance to the starting point, until it reaches the destination point. Then, the

backtracking phase connects the destination to the origin, via the shortest path that was

found during the expansion. This benchmark has a Java implementation30 that models the

circuit board as two shared bi-dimensional arrays of integers (one array for each side of the

board). Each transaction attempts to establish a route between two points of the board. The

transactions read from the shared array during the expansion phase, but mark the distances

in a transaction-local copy of the array. The shared array is modified only during the back-

tracking phase to mark the track. To use the JVSTM I simply had to wrap each position of

the two shared arrays with a VBox.

Even though there is potentially high parallelism in this application, the way that the Lee

algorithm works causes many false conflicts between transactions: During the expansion

phase, the transactions read a large number of positions from the shared board, causing

them to conflict with any concurrent transaction that has laid a track over one of the positions

read. However, there is a true conflict only if the tracks cross each other, i.e., if the board

positions used during the backtracking phase intersect.

The solution proposed to eliminate these false conflicts [Watson et al., 2007] is to perform

the early release [Herlihy et al., 2003b] of some positions from the read set: Taking into

account that during the backtracking phase the algorithm also reads the positions over

which it backtracks, it is possible to remove from the read set of the transaction all positions

used during the expansion phase and just consider, at commit time, the ones that are

added during the backtracking phase. The JVSTM provides an API that is ideal for this

situation. The method commitAndBegin() atomically commits the current transaction and

begins a new one: If the committing transaction is a read-only transaction, this operation is

equivalent to a complete release of the read set up to the point of the commitAndBegin()

operation. In effect, because the expansion phase writes to local data only, this phase

corresponds to a read-only transaction in the JVSTM, which is sure to never fail. Thus, to

eliminate false conflicts and improve the benchmark’s scalability, the JVSTM implementation

of the Lee-TM benchmark additionally uses transactions in the form shown in Listing 4.12

on page 123. With this modification, this benchmark is expected to represent a possible

30http://apt.cs.man.ac.uk/projects/TM/LeeBenchmark/
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1 class LeeRouter {
2 ...
3 void connect(...) {
4 boolean success = false;
5 try {
6 Transaction.begin(READ_ONLY);
7 // expansion phase
8 Transaction.commitAndBegin(READ_WRITE);
9 // backtracking phase

10 success = true;
11 } finally {
12 if (success) {
13 Transaction.commit();
14 } else {
15 Transaction.abort();
16 }
17 }
18 }
19 }

Listing 4.12: Pseudocode for the method that connects two points in the Lee-TM
benchmark. The transactional operation is implemented in JVSTM using an atomic
commitAndBegin() operation to perform the early release of the read set and,
thus, avoid false conflicts during the backtracking phase.

real-world application that is highly scalable even though all concurrent operations perform

updates.

For my tests with Lee-TM, I used the memory circuit board (memboard) described

in [Ansari et al., 2008]. This is the most complex circuit available in terms of number of

routes to process, modeling a 600 by 600 circuit board with 3101 routes to establish.

STMBench7. This is another benchmark commonly used to evaluate STM implementations.

The STMBench7 [Guerraoui et al., 2007] simulates the workload of a real-world object-

oriented application: The benchmark implements a shared data structure, consisting of a set

of graphs and indexes that model the object structure of complex applications. It supports

45 different operations, varying in category from simple to complex, and three predefined

workloads with different read/write ratios: read-dominated (90/10), read-write (60/40), and

write-dominated (10/90). The performance measurement is the throughput, given as the

average number of operations executed per second.

The adaptation of this benchmark to the JVSTM, initially by [Cachopo, 2007] and then
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by [Rito and Cachopo, 2010], replaces the shared data structures with their equivalent im-

plementations, using VBoxes to hold the shared values. Additionally, the benchmark manip-

ulates collections of objects transactionally: These collections are implemented with purely

functional data structures and there is a single VBox to hold the instance of a collection.

This benchmark is very difficult for STMs, because of its low scalability. The most complex

operations either cause structural modifications to the object graph or perform long traver-

sals, reading nearly all the objects. As I want to increase the potential for parallelism in the

write-dominated scenario, I run the tests with structural modifications and long traversals

disabled. Nevertheless, as the results will show, the benchmark still exhibits a high conflict

rate in the write-dominated workload, preventing scalability.

4.4.1.2 Results

Array. Before delving into the results obtained by each benchmark with the Azul System’s

JVM, let us first revisit the motivating example from Section 4.1 on page 96. There, I showed

in Figure 4.1 on page 98 the scalability limitations of the single-lock approach by increasing

the duration of the commit algorithm in the Array benchmark. In Figure 4.3 on page 125,

I present again the previous results, together with the results obtained when using the

lock-free JVSTM under the same test conditions. In both versions of the JVSTM the single-

thread executions take roughly the same time to complete. This is expected, because all the

transactions are executed in sequence, and the added delay affects all transactions equally.

However, as soon as the number of concurrent threads starts to increase, the differences

between the two algorithms become clearly noticeable: In the lock-free JVSTM, the time

to complete all the operations of the benchmark reduces continuously as the number of

concurrent threads increases, and it tends towards the baseline time. In fact, when 10,000

transactions execute in 32 concurrent threads, there will be an average of 312.5 transactions

executed per thread. These will still execute in sequence, so that a 1ms delay in each, will

cause an overall delay to complete of at least 312.5ms, which is barely noticeable in the plot.

These results demonstrate that, as expected, when the commits of write transactions overlap

each another, the lock-free design is required to ensure scalability of the application.

Now, let us turn to the results obtained in Azul System’s JVM. Figure 4.4 on page 126

displays the results for the Array benchmark. Bear in mind that Azul’s machine has many

more cores, but each core is much slower than each of the 48 cores used before, so that

total time to complete will start much higher. In both the lock-based and lock-free versions,
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Figure 4.3: Comparison of the commit algorithms using added delays. Unlike the
lock-based commit, the nonblocking version allows the application to scale when
more threads are added.

the time to complete the benchmark initially decreases as the number of threads increases,

meaning that both versions are being able to process concurrent transactions in parallel.

However, in the lock-based version, the time to complete starts to increase when running

more than 8 threads, whereas in the lock-free version it remains low. This phenomenon

coincides with the point in which the average commit time of the lock-based version starts

to increase exponentially.

Apparently, above 8 threads, the number of concurrent transactions has become high

enough, so that their commits overlap one another, causing the transactions to have to wait

increasingly longer to acquire the lock. I draw this conclusion based on the following three

observations taken from the results:

• In the lock-based version, the time to complete increases above 8 threads.

• In both versions, the number of restarts is identical, up to 64 threads, meaning that

the probability of conflict is also identical.

• In the lock-based version, the average time to commit increases exponentially31 above

8 threads, e.g. at 64 threads this time in the lock-based version is already over a

hundredfold that of the lock-free version.
31In all benchmarks, the plots for the average commit time use a logarithmic scale for the vertical axis.
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Figure 4.4: The results for the Array benchmark in the Azul VM.
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For 128 threads and above, the difference in the total number of restarts tends to increase,

with the lock-based version having approximately 40 percent more restarts than the lock-

free. This is caused by the effect of lock convoying that I described in Section 4.1.2 on

page 96. Notice that, for 256 threads, multiprocessing is necessarily involved, because the

test machine has 208 cores. The added cost of context switching, and even the probability

that a thread holding the commit lock may be preempted, contribute to increase the lock

time of each commit, with the associated pernicious effects I already mentioned.

In the lock-free commit algorithm, each transaction can perform validation independently

of the others. This means that invalid transactions can detect their condition much earlier

than if they had to wait for the commit lock: In the lock-based version, not only do these

transactions take longer to restart, they also take up lock-time preventing other transactions

from committing. Moreover, because the validation includes the helping mechanism, which

writes back pending commits ahead in the queue, it makes the restarted transactions see a

more recent version than they would if they simply restarted without helping, which improves

the odds of a successful commit after the restart.

Also in the lock-free version, the lowest time to complete the benchmark is obtained at

128 threads. In spite of that, the times to complete change very little above 16 threads: At

first glance, this is unexpected, because, ideally, the lock-free version should continue to

improve, at least up to the number of physical processors available—some increase at 256

threads is expected, as there is already context switching involved. This benchmark performs

a very high rate of memory accesses, which could cause it to reach the limits of the machine’s

available memory bandwidth. Apart from the possibility of a physical limitation, however,

there are two factors contributing to this behavior:

• As the number of concurrent transactions increases, so does the size of the commit

queue—the number of transactions to write back in the ATR list—which potentially in-

creases the amount of work that each transaction needs to do in the helping algorithm.

This affects the validation and the write back phases of the commit.

• In this workload the probability of conflict increases with the number of transactions.

This can be seen in the increasing number of restarts. So, in fact, the application needs

to perform more transactions due to restarts, as the concurrency increases.

Both aspects contribute to prevent the further reduction in the time to complete the

workload for the lock-free version. In Table 4.1 on page 128 I present the average number

127



Chapter 4 · Lock-free JVSTM

Transactions/second by number of threads

JVSTM version 1 2 4 8 16 32 64 128 256

Lock-based 574 927 1644 3101 3202 2276 1539 1413 1463

Lock-free 503 928 1438 2389 5335 5529 5696 10047 7763

Table 4.1: Total transactions per second in the Array benchmark. It includes the
transactions processed that had to restart due to a conflict.

of transactions per second that each version is capable of processing, including the trans-

actions that restart due to conflict. This provides an idea of the relative performance of the

two JVSTMs: In the lock-free version, the number of transactions per second increases up

to 128 threads—this value only drops when running with more threads than the number of

available processors. The performance of the lock-free version peeks at 128 threads, pro-

cessing just over seven times more transactions per second than the lock-based version, and

clearly taking more advantage of the parallel processing power available than its lock-based

counterpart. Taking into account that the workload is the same, the reason why the lock-

based version processes so many fewer transactions is due to the time it spends waiting for

the lock acquisition.

Lastly, the overhead of the new algorithm is visible for low thread counts: Up to 8 threads,

the lock-based version is capable of processing more transactions per second, which results

in a lower time to complete the benchmark. This behavior is expected: While contention

on the commit lock is low or even inexistent (as is always the case for a single thread), the

lock-based version should perform better, because its commit algorithm is shorter.

Lee-TM. The workload in this benchmark is quite different from the Array: One distinguish-

ing feature, in the Lee-TM, is that each transaction performs transaction-local computations

instead of strictly accessing shared state, which causes the proportion between the duration

of the transaction body and its commit to be much higher in the Lee-TM than in the Ar-

ray. Also, the commits tend to be small because, even though the transactions are relatively

big, the final size of their read and write sets is only the number of positions in the circuit

board that are required for connecting two points (due to the early release of most of the

read set). This means that the improvements to the commit phase brought about by the

lock-free implementation are much less visible in the overall performance measurements of

this benchmark.

In fact, the results for the Lee-TM benchmark, present in Figure 4.5 on page 129, show
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Figure 4.5: The results for the Lee-TM benchmark in the Azul VM.
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that both versions of the JVSTM display similar times to complete for the same number of

threads. As with the previous benchmark, however, when considering only the average time

to commit, the lock-based version starts with a lower commit time (up to 64 threads, in

this workload), and then, the commit time grows exponentially, whereas in the lock-free the

commit time remains almost the same. Like with the previous benchmark, there is clearly

a threshold for how much contention the lock-based commit can take: After a certain level

of contention is reached (which can vary with the application), the duration of the commit in

the lock-based version skyrockets.

There is also another factor that affects why the exponential growth in the commit time

is not noticeable in the plot that shows the total time to commit. In Lee-TM the transactions

are not uniform in size, and the longest paths to lay correspond to the longest running

transactions, because the breadth-first search needs to go much deeper. The longest track

to lay dominates the benchmark and, as such, no matter the amount of parallelism available,

the benchmark will never take less time to complete than the time it takes to lay the longest

track. For the memboard circuit, the longest track takes between 60 and 70 seconds to lay

(accounting for any restarts necessary) and the best time to complete the entire benchmark

corresponds to the lock-free version at 128 threads: about 71 seconds. So, the scalability of

this benchmark is limited, and it is not expected that increasing the number of concurrent

transactions will allow for further reducing the time it takes to complete the benchmark.

The number of restarts is also very similar between the two JVSTMs, as in the previ-

ous benchmark, again showing some reduction (this time less significative) in the lock-free

version for the largest number of threads. This seems to suggest a correlation between the

average commit time and the probability of conflict: When the average commit time increases

exponentially, the probability of conflict also increases, leading to more restarts. This is in

agreement with the idea that lock convoying contributes to performance degradation.

STMBench7. The results for this benchmark are available in Figure 4.6 on page 132. The

most relevant difference to the previous benchmarks is that neither version of the JVSTM is

able to scale when the number of threads increases. The STMBench7 is generally a highly

conflicting benchmark, and the write-dominated workload presents a very high number of

restarts, even for low thread counts.

Table 4.2 on page 131 shows the average percentage of restarts. It takes into account

that the same transaction might restart several times before successfully committing: Each

percentage corresponds to the ratio between the number of executions due to a restart and
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Percentage of transaction restarts by number of threads

JVSTM version 1 2 4 8 16 32 64 128 256

Lock-based 0 6.95 18.56 35.62 54.48 69.35 79.26 87.98 94.4

Lock-free 0 7.06 18.96 36.06 54.18 69.58 79.68 87.54 91.51

Table 4.2: Percentage of restarts in the STMBench7 benchmark. The percentage
of restarts in the write-dominated workload increases very rapidly and it prevents
scalability.

the total number of transaction executions (including the restarts). At 16 threads already

more than half the transactions executed correspond to a transaction restart and at 256

threads almost all transactions executed (above 90 percent) are the result of a restart. Every

time spent performing a transaction that restarts is wasted work for the measurement of the

overall throughput, so these values explain the decrease in performance for a higher number

of threads. Unlike in the Array benchmark, in STMBench7 contention in the commit lock is

a lesser problem, because of the amount of restarts caused by conflicting operations.

Like in the Lee-TM benchmark, due to the proportion between the size of the transaction’s

body and its commit, the effects of the increased average commit times, occurring above 32

threads, are barely visible in the overall throughput plot. Still, all the aspects that I have

mentioned in the previous benchmarks, comparing the lock-based with the lock-free version

still apply here also, namely:

• In the lock-based version, the average commit time increases exponentially above a

given threshold, whereas it does not in the lock-free version.

• The difference in the number of restarts is more pronounced under multiprocessing,

and appears in association with the increase in the commit time.

• Apart from the differences in commit times, the performance of the two versions is

identical.

Summary. The lock-free implementation effectively explores the parallelism, which con-

tributes to the reduction of the average commit times, most notably in scenarios where

contention affects the commit lock. The degree to which this improvement is visible in the

overall performance of the application depends on the workload. For transactions whose

body executes for much longer than the commit, or for highly conflicting workloads (in which
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Figure 4.6: The results for the STMBench7 benchmark in the Azul VM.
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a close-to-serial execution performs as good as, or better than, parallelizing the execution),

the lock-based version is still a valid choice, and it can even exceed the performance of

the lock-free version, for a low number of threads. Otherwise, the lock-free version can

improve performance and reduce the commit times by better exploring the available paral-

lelism, and, in a multiprocessing scenario, by reducing the amount of transaction restarts

that are typically caused by lock convoying. As I have mentioned in Section 4.1.3 on page 98,

if the commit phase additionally needs to write to a data repository, there is the potential

for greatly increasing the commit duration, so much so that it can become comparable to,

or even dominant of, the total duration of the transaction. Under these circumstances, I

expect that the improvements brought about by the lock-free version should become even

more visible and relevant.

4.4.2 Lock-Free Versus Top-Performing STMs

Most of the modern and top-performing STM implementations use blocking designs, relying

on locks to ensure an atomic commit operation. This approach has revealed to be better in

practice, in part due to its simplicity, and also because careful design has kept the blocking

portion of the algorithms to a minimum. Yet, a blocking approach may present scalability

problems as we move into many-core computers.

The direct comparison between different STMs can be a difficult task for several reasons,

such as the use of different programming languages, the need for customized execution

environments, the lack of common benchmarks, and the existence of non-comparable design

decisions. Deuce [Korland et al., 2010] is a Java framework for STMs: Its goal is to provide a

common API for adding STM support to an application, with minimal intrusiveness. Deuce

requires only that programmers add an @Atomic annotation to the methods that should be

executed within a transaction. Internally, Deuce provides mechanisms to support plugging

STM algorithms, which are invoked when either the application performs any access to a

memory location within a method annotated with @Atomic or when the application calls or

returns from such methods.

Thanks to the Deuce project,32 there are Java implementations of both the TL2 [Dice

et al., 2006] and the LSA [Riegel et al., 2006] algorithms that can be used out-of-the-box.

Therefore, in this section, I present a comparison between TL2 and LSA implemented in

Deuce version 1.3.0, and the lock-free JVSTM.

32https://sites.google.com/site/deucestm/
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There is a key design difference between Deuce and JVSTM, which makes comparing them

difficult. Due to its goal to provide a transparent integration of the STM with the applications,

Deuce must instrument every memory access done within an @Atomic method, regardless

of whether such access is shared or local to the transaction. This can easily lead to over-

instrumentation of application code [Dragojevic et al., 2009] leading to performance loss. This

is more noticeable in complex applications, whose longer transactions tend to perform more

computations using local unshared memory, such as Lee-TM and STMBench7 [Carvalho

and Cachopo, 2011]; previous benchmarks have shown performance differences negatively

affecting Deuce up to a hundredfold [Fernandes and Cachopo, 2011a].

Much to the contrary, JVSTM’s design principle is that the programmer must explicitly

identify shared mutable state and make it transactionally safe, by wrapping it with a VBox.

Therefore, in JVSTM there is an indirection handler— the VBox—to the actual data. Deuce

does not assume a versioned model, and expects each transactional location to contain the

data itself: It does not support the indirection required by JVSTM. As such, I chose not

to implement JVSTM in Deuce. Although technically feasible, it is not a trivial task, and

it would subvert some design choices of either Deuce or JVSTM, which I believe would not

contribute to make the comparison fairer.

To keep the comparison fairer, however, I limit my evaluation to benchmarks whose

transaction bodies only perform shared accesses. This way the set of memory accesses

automatically instrumented by Deuce is the same as that which requires protection through

VBoxes. Also, Deuce was configured to use an existing runtime optimization for read-only

transactions that allows them to skip read set validation, which is also the standard behavior

in JVSTM.

The Deuce project already provides three micro-benchmarks that are often used to eval-

uate STM implementations. They correspond to three different implementations of integer

sets, namely using a linked list, a skip list, and a red-black tree. For these three benchmarks

the amount of code executed within each transaction is very small, and the transactions need

to manipulate only the set’s data structure. This causes the transactional locations managed

by either STM to be the same. The common interface IntSet supports three operations:

Insertion, Deletion and Search.

The performance measurement is the throughput as the number of operations executed

per second. They executed in the same hardware configuration as the ones from the previous

section and tests run up to 192 concurrent transactions. All tests use a fixed-size set with
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Figure 4.7: The results for the linked list benchmark in the Azul VM.
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Figure 4.8: The results for the skip list benchmark in the Azul VM.
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Figure 4.9: The results for the red-black tree benchmark in the Azul VM.
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16,384 elements, and vary the ratio of updates. I tested with read-only transactions (only

searches, no updates), then with 20 percent updates, and, finally 50 percent updates. The

write operations alternated between insertions and deletions, so that the total size of the set

was constant over time.

From Figure 4.7 to Figure 4.9 on pages 135–137 I show the results for the three im-

plementations when running from 1 up to 192 parallel transactions. In all read-only tests

the JVSTM outperforms TL2, and does worse than LSA. As expected, given the absence of

conflicts, all implementations steadily increase the throughput as the number of threads

increases, albeit at different rates.

Considering updates, changing the ratio of write-transactions from 20 to 50 percent re-

duces the overall throughput in all cases, but does not influence the performance of each STM

relative to the others. In general, memory accesses within write transactions are more expen-

sive for JVSTM than Deuce, because, whenever reading any location, JVSTM needs to access

the transaction’s local write set first, to search for a transaction-local write, whereas Deuce

just gets the value from memory after cheaply ensuring that it is still valid. To a large extent

this accounts for the reason why JVSTM does not achieve a higher maximum throughput

in write transactions. The JVSTM performs the worst in the linked list benchmark, showing

approximately 30 percent of the throughput of LSA and 50 percent of the throughput of

TL2. In the skip list benchmark, JVSTM starts off from behind, but as it keeps a sustained

throughput it overtakes the other implementations beyond approximately 120 threads. The

throughput of LSA and TL2 spikes at around 60 threads (more noticeable in LSA), but then

degrades quickly, most probably due to lock contention. In the red-black tree benchmark,

all STMs perform similarly, tending to stabilize approximately on the same throughput from

60 threads onward. Overall, the JVSTM implementation maintains a sustained performance

over a growing number of parallel transactions, whereas the lock-based versions have initial

higher throughput but then reduce performance for higher thread counts.

4.5 Discussion and Related Work

Even though the initial proposals for STMs used nonblocking designs (from lock-free to

obstruction-free), their implementation presented large overheads, making them less per-

forming in practice than simpler blocking designs [Ennals, 2005]. In fact, the original pro-

posal of JVSTM already contemplated a lock-free approach to the commit [Cachopo, 2007]
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and hinted at a helping-based solution. However, the preliminary experiments had a lim-

ited extent, and showed worse performance than the single-lock approach, for the work-

loads tested. Most, if not all, of the most recent and current top-performing STMs block

some threads to ensure exclusive access to some critical region during certain operations

(e.g., TL2 [Dice et al., 2006], RingSTM [Spear et al., 2008], TinySTM [Felber et al., 2008b],

NOrec [Dalessandro et al., 2010], and McRT-STM [Saha et al., 2006]), typically the commit

operation.

The original JVSTM followed a similar approach, using a single lock to ensure exclusive

access to the commit operation of write transactions. Unlike other approaches, however, in

the JVSTM read-only transactions do not use any locks, and they are wait-free. Using a

single lock has the advantage of being simple to implement and very fast when the lock is

uncontended, but has the disadvantage of preventing concurrent commits that could proceed

in parallel because the committing transactions accessed unrelated data.

STMs such as TL2 allow such concurrent commits by acquiring locks for all the trans-

actional locations accessed by the transaction (and later releasing them once the commit is

concluded), but this approach has overheads that are typically proportional to the size of the

read set (R) plus the size of the write set (W ). Another problem of these blocking designs

is the duration of the critical region, which depends on what needs to be done within that

region. The original JVSTM validates the transaction and does the write back of the write

set with the lock held, thereby spending time that is proportional to R + W in the critical

region. Likewise for TL2 that needs to validate the transaction after acquiring the locks. The

LSA algorithm [Riegel et al., 2006] can be applied to either blocking or nonblocking STMs.

There is an implementation that is obstruction-free [LSA-STM, 2013], but the one available

in Deuce is actually blocking.

The commit algorithm proposed in this chapter allows for concurrent commits without

incurring into the overheads of acquiring locks. In this design, validation is lock-free and is

performed by each thread individually, racing for a position in the commit queue. The write

back phase imposes ordered writes among the committing transactions, with transactions

that have a lower version number having to be fully committed first, but a transaction does

not block waiting for other transactions to finish. Instead, transactions help to write back

other transactions that are ahead of them, thus accelerating the commit of older transac-

tions. The write back phase follows a wait-free algorithm. When multiple concurrent write

transactions attempt to commit, there is the possibility that they execute redundant work

when they help to write back the same write set. To minimize this effect, the write set of each
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transaction is split into buckets, and the helper uses randomization to access the buckets.

NOrec [Dalessandro et al., 2010] uses a lock-free validation mechanism similar to the

one I described, but it does not allow any concurrent commits, thus limiting scalability.

RingSTM [Spear et al., 2008], on the other hand, supports concurrent commits, but only

insofar as the write sets do not overlap. If this occurs, the committing transactions have to

write back serially, and there is no helping mechanism installed for this case, meaning that

it becomes blocking.

The JVSTM’s helping mechanism completely avoids any blocking behaviour, because

it maintains the sequential ordering of the write back of all valid transactions. Besides,

it maintains intact the properties of the original JVSTM design in what regards read-only

transactions, as well as the behavior of reads and writes to transactional locations during

the execution of a transaction. There are other proposed STM designs that include helping

mechanisms, but they incur performance penalties in the reads: In [Fraser and Harris, 2007]

a transaction that reads may need to help other transactions that are writing to that location

before it can know the value. In [Marathe and Moir, 2008] the entire read set is validated

every time a new record is accessed. To the best of my knowledge, the commit algorithm

that I propose is unique in this regard, being the first to use helping to reduce the time of

the commit of a transaction, by doing the commit of a single transaction concurrently by as

many cores as those available to commit on the system.

The problem of garbage collecting unused versions is seldom addressed in the context of

STMs, perhaps because the most common STMs do not support multi-versioning. [Perelman

et al., 2010] shows that no STM can be optimal in the number of previous versions kept. In

fact, the JVSTM may keep more versions than are actually required. Such can occur, e.g.,

when a long-running transaction is still running with an old version, and there have already

been many updates to the same object. This will cause the JVSTM to keep many versions of

the same location, until the old transaction finishes and allows for record cleaning, whereas,

in fact, the only versions required could simply be the oldest and the newest versions of the

object, because no other transaction was running at the moment. However, and contrary

to what is stated by [Perelman et al., 2010], JVSTM is MV-permissive, because it keeps all

versions that any running transaction may require. This holds true for both the previous GC

algorithm and the new one.
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4.6 Summary

In this chapter I present and discuss the modifications required to make JVSTM a completely

lock-free STM. The new implementation shows improvements over the lock-based design for

large thread counts by eliminating lock contention, and provides results that compete with,

and sometimes exceed, some of the top-performing lock-based implementations.

I begin by presenting the motivation for redesigning the commit algorithm, and I describe

the circumstances that can affect negatively the performance of the lock-based implementa-

tion, thereby arguing in favor of a nonblocking approach.

Next, I present the concrete algorithms: I provide a description of the new commit algo-

rithm and discuss its nonblocking properties. The new lock-free commit algorithm enables

write transactions to proceed in parallel, by allowing them to run their validation phase in-

dependently of each other, and by resorting to helping from threads that would otherwise

be waiting to commit, during the write back phase. I also present a new GC algorithm to

dispose of old unused versions, which eliminates the scalability issues identified with the

original implementation. The new GC allows for asynchronous identification of the unreach-

able versions and minimizes its interference with the rest of the transactional system.

To evaluate the lock-free JVSTM, I perform two analysis: One comparing the lock-based

with the lock-free implementation; another comparing the lock-free JVSTM with two top-

performing STMs. I use benchmarks that are often used to evaluate STM implementations

and a custom benchmark to better analyze the features of the lock-free design. The possi-

bility to use a test machine with a high number of real cores enabled me to obtain results

that provide high levels of confidence about the real scalability of the algorithms for high

thread counts. Regarding the effects of the lock-free commit on the overall performance of

applications, there are mixed results, showing that execution patterns and domain-specific

logic can have a great influence on the outcome.

I end the chapter, with a discussion of the related work, focusing on various blocking

versus nonblocking approaches to STM design.
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In this chapter I combine the ideas presented in the two preceding chapters to design a

nonblocking alternative to TMM : NbTMM. From Chapter 3, I reuse the design of the middleware

solution. NbTMM continues to rely on STM to manage transactions, and to use a TDR strictly

for storing data externally. The goal is to retain the same qualities of the solution proposed

initially, while improving its scalability, especially by eliminating the commit bottleneck.

To this effect, I use the lock-free JVSTM implementation, described in Chapter 4, and I

apply the same programming techniques, such as thread helping, to redesign TMM, using

exclusively nonblocking algorithms. The resulting middleware retains the same transactional

consistency guarantees and enables transactions to execute in parallel, even during the

commit of write transactions, while ensuring global ordering and without using any locking

mechanism that could prevent individual thread progress.

The implementation of NbTMM is nonblocking, insofar as it abstracts from the imple-

mentation of its two underlying components—the TDR and the distributed communication

infrastructure. To qualify the algorithms in NbTMM as nonblocking, I make the following

assumptions regarding the underlying operations that it invokes: (1) every method call even-

tually returns, and (2) the network communications do not fail. I understand that ensuring

these properties may not be trivial, but I do not delve into these aspects in this dissertation.

I use the operations of the components underlying NbTMM much in the same way as any

programmer uses a Compare-And-Set (CAS) operation to achieve synchronization. By this

I mean that, even tough these operations may internally use blocking synchronization (like

the CAS does), the programmer can use them abstracting from this fact, as long as some as-

sumptions hold.33 The assumptions that I make are not a strict requirement of the solution:

Their purpose is merely to help to reason about the properties of the algorithms in NbTMM,

independently of any other concerns related to the properties of the underlying components.

To take those properties into account would not preclude the algorithms that I will present;

rather it would require them to be extended to account for additional scenarios.

33For the CAS, the relevant assumptions are that the operation will complete (either way), and that it appears
to execute atomically (the hardware ensures that the CAS is not interrupted halfway through).
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The remainder of this chapter presents the design of NbTMM and its experimental eval-

uation. The presentation sequence of each element follows a structure similar to that of

Chapter 3: I start from the integration of the lock-free JVSTM into the enterprise application,

and incrementally add the required functionality, which provides support for storing data ex-

ternally, and to operate in a clustered environment. For the experimental evaluation, I use,

once again, the RadarGun benchmarking framework with the same workloads, this time to

compare application throughput when using NbTMM versus TMM, and versus the standard

implementation approaches that use IMDGs directly.

The fully working implementation of all algorithms described in this chapter, just

as in Chapter 3, is materialized within the Fénix Framework, and it is available at

https://github.com/smmf/fenix-framework from commit with SHA-1 checksum

657ebe3ea2367368442322734ee56c7c046e9222.

5.1 Overview of the Solution

The design of NbTMM follows the same model that was proposed in Section 3.2 on page 33. In

particular, some elements of TMM can be used for NbTMM, exactly as described in Chapter 3.

Namely:

• The integration of the lock-free JVSTM in an enterprise application occurs as described

in Section 3.4 on page 39, because the new version of the JVSTM retains the same API.

• The caching mechanism described in Section 3.5.3 on page 49 is the same, because it

depends solely on the VBox API, which remains unchanged.

• The allocation of new VBoxes described in Section 3.5.4 on page 50 is also the same,

because the structure of VBoxes did not change, as well.

In the current section, I present a summary of the most noteworthy aspects of NbTMM’s

design. These will be detailed in the following sections, when presenting each part of the

solution.

Data mappings in external storage are immutable. Data stored in the TDR are never

overwritten with different values: Once some value V is written for a given key K, then any

other possible writes to K must necessarily be of V . In fact, each version of application data is
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written only once; multiple writes for a given key (of the same value) occur only for NbTMM’s

infrastructural data.

Storage keys are unique. The keys used to store each write set entry are unique, so that

transactions may write their write sets concurrently to the TDR with the guarantee that they

will never be writing to overlapping keys.

Only the committer persists the write set. The changes produced by a valid write

transaction—that is, the data contained in the write set—are written to the TDR only once,

and by the thread executing such transaction.

All nodes commit all write transactions, using helping within each node. From a high-

level perspective, the commit sequence of each write transaction follows these steps:

1. Perform local validation. If the transaction is invalid, commit fails here.

2. Persist the write set;

3. Broadcast a commit request;

4. Process the commit request’s queue in sequence until self commit request has been

processed. If it was successfully processed at this point, then end commit; otherwise

return to step 1.34

Only the committer has access to its read set. Commit requests do not include the read

set. This is because sending the entire read set would lead to a very large payload in the

commit requests. Instead, validation of the read set is performed only by the originator of the

request, before the request is broadcast, and the commit request contains just the version

in which the transaction is valid. Consequently, between the validation of request Ra and

the actual processing of the commit request by each node, some other request Rb, enqueued

meanwhile, may cause the validation status of Ra to become undecidable. As a result, the

same commit request may have to be sent more than once by the committing thread. NbTMM

includes techniques to minimize the need to resend the same request multiple times. The

most relevant of them consists of sending in each commit request the set of identifiers of

benign commit requests: Benign commit requests are requests that, although not committed

at the time the commit request was sent, were seen by the commit request’s sender, and are

34Step 2 is skipped when repeating the commit sequence, as will be made clear during the detailed presentation
of the algorithm.
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known not to conflict with its request. Should they meanwhile become committed ahead of

this request, they will not prevent it from committing as well. To the best of my knowledge,

this technique is unique to NbTMM.

Nodes decide commit status independently. At commit time, each write transaction

broadcasts a commit request, such that every node in the cluster can deterministically and

independently decide whether the request is valid when it is seen. The write back phase

of the commit procedure is also performed independently on each node, using the helping

mechanism described in Section 4.2.2 on page 102. In the node from which the associated

commit request originated, the new values are written to their corresponding VBoxes. In all

other nodes, the value set for each written VBox is the NOT_LOADED_VALUE.

5.2 Extension for Persistent Data

Following a structure analogous to that of Section 3.5 on page 41, this section presents the

design of the elements in NbTMM that add support for working with data stored externally,

enabling NbTMM to be used with a single-node application. I first present, in Section 5.2.1,

how data is mapped to the TDR, followed by the algorithms to store and load such data,

respectively in Section 5.2.2 on page 147 and in Section 5.2.3 on page 148.

5.2.1 Data Mapping

When a write transaction attempts to commit, one of its earliest steps will be to store the

write set in the TDR. This step is performed exclusively by the thread of the committing

transaction, and it occurs even before broadcasting a commit request. The goal of this

design is to reduce the number of accesses to the TDR. Also, it prevents having to send the

full write set as part of the commit request: Only the identifiers of each VBox in the write

set are sent (not their values), to allow for each node to perform invalidation of local cache

entries, as needed.

When storing the write set, it is not known yet whether the transaction will be globally

valid to commit, and consequently the commit version is also not known. Therefore, the data

mapping described in Section 3.5.1 on page 43 cannot be used. Instead, a committing trans-

action generates a commit identifier (commitId) from a Universally Unique Identifier (UUID). It

then uses this identifier to generate unique keys in which to store each entry from the write
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set. In NbTMM, each VBoxBody is mapped to the TDR using the function makeVersionedKey

similar to the one described in Chapter 3, where instead of using a version it uses a commitId.

As described before, this function must return unique values (versionedKeys) for each unique

pair of arguments. This is trivial to ensure, given that the commitId is already a unique value.

Unlike the solution used for TMM, in NbTMM the value stored for each versionedKey is

simply the actual value written in the transaction for the given VBox. There is no need to store

a RepositoryEntry (cf. Listing 3.5 on page 44), because there is yet no version associated.

In a later stage of the commit procedure, which I will describe ahead in Section 5.3.3

on page 161, there will be another key written to the TDR that maps between a transaction

version and the corresponding commit identifier. NbTMM keeps in the TDR a mapping

between every committed transaction version and its corresponding commit identifier, where

the key is the transaction version and the value is the commitId. This way, it becomes

possible to retrieve the value of a VBox for a given version, by first converting the version into

a commitId, and then to use the pair (vboxId, commitId) to retrieve the required value. The

mapping between a version and its commitId is immutable and, in practice, each NbTMM

instance should keep a cache of this information, to avoid requesting it from the TDR.

Notice that headKeys have been eliminated in NbTMM.

5.2.2 Persisting Changes

Taking into account that, in the lock-free JVSTM, any thread performing the commit of a

write transaction may help to execute the write back of another commit, and that one goal is

to minimize the number of calls to the TDR, then it is best to store the write set in the TDR

before entering a stage of the commit operation that involves thread helping.

The solution proposed in Section 3.5.2 on page 45, which sends the write set to the repos-

itory after validation, can also be applied to the lock-free JVSTM, with minor adaptations.

As such, the persistWriteSet(UUID) operation, shown in Listing 5.1 on page 149, runs

early during the commit—immediately after local validation, and before broadcasting the com-

mit request—and it is executed solely by the thread of the committing transaction, without

interfering with any other operation.35 The implementation of persistWriteSet(UUID)

is analogous to commitToRepository(int) from line 16 of Listing 3.6 on page 46: The

35Ideally, concurrent executions of persistWriteSet(UUID) will progress without any contention whatso-
ever, but it will depend on whether the TDR in use supports it.
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only differences are that it takes a commitId instead of a txNumber and it does not invoke

updateTxNumber(Repository, int). Now that headKeys are not used, the operation

equivalent to putWriteSet(Repository, int) is much simpler and it appears embed-

ded directly in persistWriteSet(UUID).

NbTMM keeps a mapping between transaction versions and commit identifiers, both in

main memory and in the TDR. Each helper thread will set these mappings, when helping any

given transaction to commit, unless the mappings are detected already to be set at the time

that the helper attempts to do it. This can be seen in mapTxVersionToCommitId(int,

UUID) in Listing 5.13 on page 169.

5.2.3 Loading the Contents of a VBox

The concerns here are identical to those expressed in Section 3.5.5 on page 53: It is necessary

to consider the possibility that a requested value may be missing from main memory, and so

to reload it from the TDR. In NbTMM, however, this must be accomplished in a nonblocking

fashion. Hence, it is no longer possible to read the value(s), and then, simply use mutual

exclusion to update the contents of the VBox. Consequently, the reload algorithm must now

take into account that the contents of the VBox may change concurrently, because of either

a commit or another reload.

When describing TMM, I introduced the operation getBoxValue(VBox) in two steps:

First, in Listing 3.11 on page 57, when describing the extension for persistent data and

later, in Listing 3.19 on page 72, when describing the extension for clustered environ-

ment. Here, I rely on the previously introduced concepts of NOT_LOADED_VALUE and

NOT_LOADED_BODY, and present the complete version of getBoxValue(VBox) at once,

even tough some of the code is needed only in a clustered configuration.

Simply put, when the reload operation is triggered because a NOT_LOADED_BODY is

found, it will generate the tail of bodies to be added at the end of the current list of

VBoxBodies in memory, just like before. However, when replacing the reference to the

NOT_LOADED_BODY with a reference to the new tail, the algorithm will use a CAS opera-

tion to do so. If the CAS succeeds, the reload is complete; otherwise, the reload knows that

some other thread placed some other tail, in which case it must reevaluate the state of the

VBox and, if needed, to retry the tail replacement, taking into account the new tail that now

exists. When the reload operation is triggered by a NOT_LOADED_VALUE, then it is safe to
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1 class Transaction {
2 ...
3 void persistWriteSet(UUID commitId) {
4 Repository tdr = getRepository().getTDR();
5

6 boolean success = false;
7 try {
8 tdr.beginTransaction();
9

10 // Similar to putWriteSet(Repository, int) from Chapter 3
11 for (WSEntry<VBox, Object> wsEntry : this.writeSet) {
12 Object vboxId = wsEntry.getVBox().getId();
13 Object newValue = wsEntry.getValue();
14

15 tdr.put(makeVersionedKey(vboxId, commitId),
16 (newValue == null ? NULL_VALUE : newValue));
17 }
18

19 success = true;
20 } catch (Exception e) {
21 throw new CommitException(e);
22 } finally {
23 try {
24 if (success) {
25 tdr.commitTransaction();
26 } else {
27 tdr.rollbackTransaction();
28 }
29 } catch (Exception e) {
30 throw new CommitException(e);
31 }
32 }
33 }
34 }

Listing 5.1: The persistWriteSet(UUID) operation. It is similar to
commitToRepository(int) from line 16 of Listing 3.6 on page 46, except that it
uses commitIds and it writes versionedKeys only.
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1 class Transaction {
2 ...
3 Object getBoxValue(VBox vbox) {
4 ...
5 synchronized (vbox) {
6 vbox.reloadVBox(getReadVersion());
7 }
8 ...
9 }

10

11 static Map<int, UUID> TX_VERSIONS_MAP = ...;
12

13 static UUID getCommitIdForVersion(int version) {
14 return TX_VERSIONS_MAP.get(version);
15 }
16 }
17

18 class VBox {
19 ...
20 void reloadVBox(int requiredVersion) {
21 // same as reloadVBox(int) from Listing 3.11 on page 57
22 }
23

24 void reloadBody(VBoxBody body) {
25 Repository tdr = getRepository().getTDR();
26 UUID commitId = Transaction.getCommitIdForVersion(body.version);
27 body.value = tdr.get(makeVersionedKey(getId(), commitId));
28 }
29 }

Listing 5.2: The nonblocking version of getBoxValue(VBox).

just reload and set the missing value on the already existing body. As mentioned in Sec-

tion 3.6.5 on page 71, this operation is safe because it does not change the list of bodies, and

the value of a VBoxBody should be seen as a value object.

Listing 5.2 shows the new operation getBoxValue(VBox), which simply eliminates the

synchronization monitor that was used to protect the operation reloadVBox(int). The al-

gorithm for reloadBody(VBoxBody) is identical to its previous version, except that it uses

the commitId instead of the version. The operation getCommitIdForVersion(int) is

a trivial lookup on an in-memory map that keeps the association between commit identifiers

and their corresponding version. This mapping is updated when committing a write transac-

tion, as will be shown ahead (cf. Listing 5.13 on page 169). The operation reloadVBox(int)
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remains the same from line 19 of Listing 3.11 on page 57. However, some of its underly-

ing operations are defined differently. These changes are shown in Listing 5.3 on page 152

and Listing 5.4 on page 153:

• loadVersionsInRange(int) uses an algorithm similar to the one from line 3

of Listing 3.12 on page 58: It iteratively reads the values for the VBoxBodies with

versions in the range [low; high[, where low is the version that is immediately less than

or equal to the requiredVersion, and high is the lowest version already loaded in

memory.36 The main difference is that it uses commitIds instead of the versions to

build the keys to read from the TDR.

• replaceTailInVBox(VBoxBody) and replaceTailInBody(VBoxBody,

VBoxBody) are identical, in that they both attempt to replace, atomically, the existing

reference to the NOT_LOADED_BODY with the given tail. In case the reference to update

changes meanwhile, they both call updateAndReplaceTailInBody(VBoxBody,

VBoxBody) to find the newest reference to the NOT_LOADED_BODY, and then

continue reattempting the update via replaceTailInBody(VBoxBody). The only

difference between the two replacement operations is that they change references in

different object types, respectively a VBox and a VBoxBody.

• updateAndReplaceTailInBody(VBoxBody, VBoxBody) obtains the current ref-

erence to the NOT_LOADED_BODY and decides whether the CAS is still needed: It will

be needed if, after eliminating from the tail those VBoxBodies that have meanwhile

appeared in memory, the remaining tail still contains any versions to append. The

operation findSubTail(VBoxBody, VBoxBody) is used to filter the versions that

are already present in the VBox’s sequence of bodies.

5.3 Extension for Clustered Environment

This section presents the elements that add support for using NbTMM in a clustered envi-

ronment. I start by introducing NbTMM’s distributed architecture and its synchronization

mechanisms in Section 5.3.1 on page 154. Next, I describe the commit algorithm in Sec-

tion 5.3.2 on page 155. The helping operation that is used in each node to commit trans-

actions is addressed separately in Section 5.3.3 on page 161. Finally, in Section 5.3.4 on
36Notice that the iteration runs from high to low, and recall that the expectation is that the required version

tends to be at the head of the list of versions.
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1 class VBox {
2 ...
3 VBoxBody loadVersionsInRange(int requiredVersion) {
4 Repository tdr = getRepository().getTDR();
5 LinkedList<Pair<Object, Integer>> entries = new LinkedList<>();
6 Cons.<Pair<Object, Integer>> empty();
7

8 int versionToLoad;
9 VBoxBody oldestBody = getOldestBody();

10 if (oldestBody == null) {
11 versionToLoad = getVersionClock();
12 } else {
13 versionToLoad = oldestBody.version - 1;
14 }
15

16 while (true) {
17 UUID commitId = getCommitIdForVersion(versionToLoad);
18 Object value = tdr.get(makeVersionedKey(getId(), commitId));
19

20 if (value != null) {
21 Pair<Object, Integer> pair =
22 new Pair<Object, Integer>(value == NULL_VALUE ? null : value,
23 versionToLoad);
24 entries.addFirst(pair);
25 if (versionToLoad <= requiredVersion) {
26 break;
27 }
28 } else if (versionToLoad == 0) {
29 // special case: the required version has no value
30 entries.addFirst(new Pair<Object,Integer>(null, 0));
31 }
32 }
33 versionToLoad--;
34 }
35

36 // build the new tail
37 VBoxBody bodies = NOT_LOADED_BODY;
38 for (Pair<Object, Integer> pair : entries) {
39 bodies = VBox.makeNewBody(pair.first, pair.second, bodies);
40 }
41 return bodies;
42 }
43 }

Listing 5.3: Auxiliary operations for the nonblocking reload of a VBox.
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1 class VBox {
2 ...
3 void replaceTailInVBox(VBoxBody tail) {
4 VBoxBody current = this.body;
5 if (current != NOT_LOADED_BODY
6 || !compareAndSwapObject(this, FIELD_OFFSET_BODY,
7 NOT_LOADED_BODY, tail)) {
8 updateAndReplaceTailInBody(this.body, tail);
9 }

10 }
11

12 void replaceTailInBody(VBoxBody body, VBoxBody tail) {
13 VBoxBody current = body.previous;
14 if (current != NOT_LOADED_BODY
15 || !compareAndSwapObject(body, FIELD_OFFSET_PREVIOUS,
16 NOT_LOADED_BODY, tail)) {
17 updateAndReplaceTailInBody(body.previous, tail);
18 }
19 }
20

21 void updateAndReplaceTailInBody(VBoxBody current, VBoxBody tail) {
22 current = getOldestBody(current);
23 tail = findSubTail(current, tail);
24

25 if (tail != NOT_LOADED_BODY) {
26 replaceTailInBody(current, tail);
27 }
28 }
29

30 VBoxBody findSubTail(VBoxBody head, VBoxBody tail) {
31 while (tail != NOT_LOADED_BODY && tail.version >= head.version) {
32 tail = tail.previous;
33 }
34 return tail;
35 }
36 }

Listing 5.4: Auxiliary operations for the nonblocking reload of a VBox (cont.).
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page 172, I describe how the previous helping is integrated also with the start of every new

transaction.

5.3.1 Synchronization Mechanisms

Initially, NbTMM relied also on Hazelcast’s distributed topic for publishing commit requests

to all members of the cluster. After the first experimental results, however, this design proved

to be a scalability bottleneck, due to the amount and payload of commit request messages

exchanged using the distributed topic. The NbTMM’s ability to process commits faster was

being limited indirectly by the speed with which Hazelcast was able to reliably broadcast

messages to all members of the cluster. Some experiments ensued and, after considering

other messaging infrastructures, such as JGroups,37 the final choice was to use ZeroMQ.38

To this choice, contributed not only my own experimental performance results,39 but also an

evaluation by Dworak et al. [2011].

ZeroMQ (ZMQ) is a high-performance asynchronous messaging library designed for large

scale distributed applications. ZMQ bases its API on a generalization of the concept of

sockets, which can represent a many-to-many connection between endpoints. On top of the

basic API, ZMQ also provides several message-based communication patterns, for the most

common usages, such as publish-subscribe, request-reply, and push-pull.

Figure 5.1 on page 155 shows the distributed architecture of NbTMM. Each

Node (Node1..Noden) represents a clustered NbTMM instance running in an application

server. To broadcast a commit request to every other node, each node only needs to send

its request to the Sequencer, using a Push-Pull messaging pattern. In turn, the Sequencer

is waiting until some node pushes a commit request. Then, internally, the Sequencer orders

every request that it receives, in any given order, and then broadcasts the requests to every

node, using a Publish-Subscribe messaging pattern. This design guarantees that all nodes

will receive all commit requests in the same order, determined by the Sequencer. Each node

subscribes to the commit requests published by the Sequencer, and upon receiving a commit

request, the node just adds it to a queue of requests to process.

Next, I will detail the algorithm followed by each node when committing a transaction.

Similarly to the design of TMM, in NbTMM I assume that after any data is written to the

37http://www.jgroups.org/
38http://zeromq.org/
39https://github.com/smmf/pubsub-bench
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Figure 5.1: Distributed architecture of NbTMM. It uses a dedicated component to
receive all commit requests, which are then published in the same order to all nodes.

TDR, it will be made available to other nodes as requested. This allows me to assume that,

when a commit request is broadcast to all nodes, data written to the TDR will already be

accessible for the other nodes to read, if needed. In practice, this is necessary so that when

a commit request is processed in a node, thereby creating a new version, and, afterwards,

some transaction begins in this new version, any data that it may need to reload from the

TDR will be available.

5.3.2 Committing a Transaction

Listing 5.5 on page 156 shows the algorithm of the cluster-wide commit operation. It

performs the following steps in a loop until the transaction is either successfully committed

or found invalid.

1. Perform read set validation, after processing pending commit requests, if any (line 6).

2. If this is the first attempt:

(a) Create a new commit request with a unique identifier (line 8).

(b) Persist the write set to the TDR (line 9).

3. For subsequent commit requests, update the original request (line 11).

4. Broadcast the commit request (line 13).
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1 class Transaction {
2 ...
3 void commit() {
4 CommitRequest myRequest = null;
5 do {
6 validate();
7 if (myRequest == null) {
8 myRequest = makeCommitRequest();
9 persistWriteSet(myRequest.getId());

10 } else {
11 myRequest = updateCommitRequest(myRequest);
12 }
13 broadcast(myRequest);
14 helpToCommit(myRequest.getId());
15

16 // At this point this.lastProcessedRequest refers to this
17 // transaction’s request. If it was decided as VALID, then
18 // the transaction must be fully committed.
19 } while (this.lastProcessedRequest.getValidationStatus()
20 != ValidationStatus.VALID);
21 }
22 }

Listing 5.5: The main algorithm of the nonblocking commit. It keeps attempting to
commit until it either succeeds or the transaction becomes invalid. The validation is
performed locally, exclusively.

5. Process all pending commit requests until own request is processed (line 14).

When committing a write transaction, the first operation to perform is to check the

transaction’s validity against the most recent state known by the node. To do so,

the operation validate(), detailed in Listing 5.6 on page 158, first processes any

pending commit requests (line 4), to update the local state of the node. The op-

eration helpCommitAll(CommitRequest) will iterate all existing requests, starting

from the one last processed by this transaction.40 This corresponds to the first help-

ing stage, where a transaction may help others to commit. The bulk of the work

is done by the operation handle(Transaction) in line 17. This operation is de-

fined in the CommitRequest, and it will be described in detail in the following sec-

tion. When helpCommitAll(CommitRequest) completes, it returns the last request

40The value of this.lastProcessedRequest is initialized during the start of a new transaction, as de-
scribed in Section 5.3.4 on page 172.
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that it helped to commit, which is used to update this transaction’s reference to its

lastProcessedRequest. After having processed as many commit requests as pos-

sible, validate() performs a snapshot validation as described in line 21 of List-

ing 4.6 on page 110. If validation fails, snapshotValidation(int) will throw a

CommitException, which in turn, terminates the commit entirely. If the validation

succeeds, the transaction is upgraded, by updating its read version to the version of

lastSeenCommitted record.

Assuming that this is the first commit attempt, a new commit request will be created.

The detailed contents of a commit request will be presented ahead. For now, it suffices

to mention that a commit request contains the necessary information to allow any node

to independently and deterministically decide whether the commit is valid. In case this is

not the first attempt to commit this transaction, then all that is necessary is to update the

contents of the commit request. Notice that the commit identifier of a transaction does not

change when reattempting to commit. A commit request holds a unique commit identifier,

which is used to store this transaction’s write set persistently in the TDR, during the first

commit attempt. The operation persistWriteSet(UUID) has been presented already

in Listing 5.1 on page 149.

Next, the commit request is broadcast to all nodes (cf. broadcast(CommitRequest)

in Listing 5.7 on page 158). This operation uses the underlying communication infrastruc-

ture to send the commit request to all nodes. The most important guarantee provided by

the operation ClusterUtils.sendCommitRequest(CommitRequest) (line 5) is that

all nodes will always receive in the same order all commit requests sent. Before sending the

commit request, however, a local map of commit requests (COMMITS_MAP) is updated with

the current request and the associated owning transaction. Later, when handling incoming

commit requests, this will allow for the receiver to recover the transactional context for the

requests of transactions from the local node. In practice, this enables the helper transac-

tions to access the helped transaction’s write set, allowing for the local node’s cache to be

immediately updated with the write set values, whereas caches in the remote nodes will not

have access to the full write set and, thus, will only be able to invalidate their corresponding

cache entries, by committing a NOT_LOADED_VALUE to the VBoxes.

After the commit request is broadcast, the commit phase enters the second helping stage:

The sender thread will now help to process all commit requests in order, until it completes

handling its own commit request, which, assuming that the underlying communications

do not fail, will eventually appear in the list of commit requests to process. The operation
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1 class Transaction {
2 ...
3 CommitRequest validate() {
4 this.lastProcessedRequest =
5 helpCommitAll(this.lastProcessedRequest);
6

7 ActiveTxRecord lastSeenCommitted = LAST_COMMITTED_RECORD;
8 snapshotValidation(lastSeenCommitted.txNumber);
9 upgradeTx(lastSeenCommitted);

10 }
11

12 CommitRequest helpCommitAll(CommitRequest current) {
13 CommitRequest previous = null;
14

15 do {
16 previous = current;
17 current.handle(this);
18 current = getNextRequestMaybeNull(current);
19 } while (current != null) {
20 return previous;
21 }
22

23 void upgradeTx(ActiveTxRecord newRecord) {
24 setReadVersion(newRecord.txNumber);
25 }
26 }

Listing 5.6: Validation before broadcasting commit request. Validation is a local-
only operation, performed before broadcasting the commit request. Other pending
commit requests are processed first, to ensure that validation occurs against the
most recent state.

1 class Transaction {
2 ...
3 void broadcast(CommitRequest request) {
4 COMMITS_MAP.put(request.getId(), this);
5 ClusterUtils.sendCommitRequest(request);
6 }
7 }

Listing 5.7: The broadcast(CommitRequest) operation. Each node keeps a
map of its own commit requests and associated transactions. Later, this will allow a
helper transaction to recover the context of the helped transaction, when handling a
commit request from the local node.
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1 class Transaction {
2 ...
3 void helpToCommit(UUID myRequestId) {
4 CommitRequest current = this.lastProcessedRequest;
5 do {
6 current = getNextRequest(current);
7

8 current.handle(this);
9 this.lastProcessedRequest = current;

10

11 if (current.getId().equals(myRequestId)) {
12 return current;
13 }
14 } while (true);
15 }
16 }

Listing 5.8: The helpToCommit(UUID) operation. It processes all commit re-
quests, in order, until it completes the processing of its own commit request, identi-
fied by myRequestId.

helpToCommit(UUID), shown in Listing 5.8, invokes the helping of each request. It starts

from the last commit request that this helper transaction has already helped, and it con-

tinues forward until it eventually processes its own request (detected in line 11). Again,

handle(Transaction) is responsible for the actual helping of a single commit request.

The main difference between helpCommitAll(CommitRequest) and

helpToCommit(UUID), apart from the loop termination condition, is that the former ob-

tains the next request to handle using getNextRequestMaybeNull(CommitRequest),

whereas the latter uses getNextRequest(CommitRequest). In the first case, when

there are no more requests in the queue, the method simply returns null, whereas in the

second case, at least one more request must arrive (this transaction’s own request that was

just broadcast), so this operation will never return null. Any delay here corresponds, at

most, to the amount of time that it takes for the request to travel to the Sequencer and back.

After returning from helpToCommit(UUID), the lastProcessedRequest of the

transaction is guaranteed to reference the transaction’s own request. The main commit()

operation can now read this request’s validation status to determine whether it was set as

valid (line 19 of Listing 5.5 on page 156). If so, then this commit is fully processed and the

commit() operation returns; otherwise it repeats the commit procedure described in this
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section.

While executing the commit steps described above, whenever the transaction helps

to process a commit request, it is notified of the request’s validation status—the

handle(Transaction) operation receives a reference to the transaction, so that it can

call back to notify the transaction of the request’s validation outcome—either VALID or

UNDECIDED. For a request that is not committed, that is its status is UNDECIDED, this

transaction will check whether it would have made this transaction invalid if such request

had committed. If committing the request would not invalidate this transaction, then the

request is considered benign to this transaction, and it is added to a set of benign commit

requests. When sending its own commit request, the transaction includes the set of benign

commit requests.

Other transactions are themselves concurrently attempting to commit and, once

UNDECIDED, they will resend their requests, which may end up ahead of this transaction’s

request, in which case, if successfully committed, they would make this transaction’s re-

quest UNDECIDED. By broadcasting to all nodes that some other requests are benign, this

transaction is improving the shared knowledge and the likelihood of its commit request being

considered as VALID still.

Consider the following illustrative scenario: At a given moment there are n concurrent

write transactions attempting to commit (T1...Tn). Let us assume that these transaction are

all locally valid in the most recent version of the system, V1. Now, they all attempt to commit

by broadcasting their own commit request, which mentions that each transaction is valid in

V1. Eventually, these n requests end up queued in every node, in some given order.

The (lucky) first request enqueued will be trivially VALID and commit successfully. How-

ever, all other n − 1 commit requests will be UNDECIDED: This is because, when they are

analyzed in each node, the most recent version will be V2 already (generated by the commit

of the first request), and they are only valid up to V1. If each failed transaction was simply to

repeat the commit loop, then it would locally revalidate against V2 and, either become invalid

or upgrade its read version to V2, in which case it would eventually resend the request.

The problem here is that, at most, only one of all the n − 1 requests will be able to

commit,41 whereas the others will be UNDECIDED, once again. The key insight is that the

transactions owning each of the n − 1 requests can take the opportunity, when processing

41They may all fail to commit, in the eventuality that another commit request from the thread that was able to
commit the first transaction, enters again ahead of all others.
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the queue of commit requests, and validate themselves against the write set of the requests

that they see: Any of these requests, although UNDECIDED at the present moment, may

appear committed next time. In the event they appear committed, this transaction’s commit

request will provide the information on whether they are compatible, i.e. benign, such that

their commit does not invalidate this request’s own commit.

In Listing 5.9 on page 162, I show how to extend the commit algorithm to support this

behavior. The transaction’s property undecidedRequests stores the UNDECIDED com-

mit requests seen by this transaction, and the property checkedRequestIds stores the

commit identifiers of the requests already checked, to avoid checking them multiple times.

The transaction instance is notified of each processed request’s outcome through a call

to either notifyValid(CommitRequest) or notifyUndecided(CommitRequest).

Whenever a VALID request is seen, it can be removed from the requests to check

(undecidedRequests), because it will necessarily already be taken into account during

the validation procedure, as it corresponds to a committed version. The requests that

are UNDECIDED, are added to the undecidedRequests, unless they have already been

checked before. Then, the commit() operation, before creating or updating the com-

mit request to broadcast, computes the set of benign request identifiers. The operation

selectBenignRequestsToSend() iterates the undecided requests, yet unchecked, and

checks whether their write set intersects this transaction’s read set (line 20): Those requests,

whose write set does not intersect with this transaction’s read set are returned and added

to the commit request. Immediately after, the undecidedRequests maps is cleared. This

is because the algorithm avoids sending the same information multiple times: Each node

keeps a map of benign requests for each request, and each request sent will contain only the

newly found benign requests.

5.3.3 Helping to Commit a Transaction

The commit request is the core element of the commit operation. Its structure is shown

in Listing 5.10 on page 163. During the creation of a commit request (line 31 of Listing 5.9

on page 162) a unique identifier is automatically generated and assigned to the id field.

When updating the commit request (line 34), the identifier remains the same. Additionally,

the commit request holds the following attributes:

• validTxVersion: Represents the transaction’s current read version (after a success-

ful validation()). This request will be immediately valid to commit, if when it is
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1 class Transaction {
2 ...
3 Map<UUID, CommitRequest> undecidedRequests = new HashMap<>();
4 Set<UUID> checkedRequestIds = new HashSet<>();
5

6 public void notifyValid(CommitRequest request) {
7 this.undecidedRequests.remove(request.getId());
8 }
9

10 public void notifyUndecided(CommitRequest request) {
11 if (!this.checkedRequestIds.contains(request.getId())) {
12 this.undecidedRequests.put(request.getId(), request);
13 }
14 }
15

16 Set<UUID> selectBenignRequestsToSend() {
17 Set<UUID> benignIds = new HashSet<>();
18 for (CommitRequest request : this.undecidedRequests.values()) {
19 this.checkedRequestIds.add(request.getId());
20 if (validAgainstWriteSet(request.getWriteSet())) {
21 benignIds.add(request.getId());
22 }
23 }
24 return benignIds;
25 }
26

27 void commit() {
28 ...
29 Set<UUID> benignRequestIds = selectBenignRequestsToSend();
30 if (myRequest == null) {
31 myRequest = makeCommitRequest(benignRequestIds);
32 persistWriteSet(myRequest.getId());
33 } else {
34 myRequest = updateCommitRequest(myRequest, benignRequestIds);
35 }
36 this.undecidedRequests.clear();
37 ...
38 }
39 }

Listing 5.9: Computing benign commit requests. These are sent along with the
commit request to reduce the number of retries required to commit a transaction.
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1 class CommitRequest {
2 enum ValidationStatus {
3 UNSET, VALID, UNDECIDED;
4 }
5

6 // Attributes set by the sender.
7 UUID id;
8 int validTxVersion;
9 Set<Object> writeSet;

10 boolean isWriteOnly;
11 Set<UUID> benignCommits;
12

13 // Attributes set in each destination node.
14 CommitOnlyTransaction transaction;
15 final AtomicReference<ValidationStatus> validationStatus =
16 new AtomicReference<>(ValidationStatus.UNSET);
17 final AtomicReference<CommitRequest> next = new AtomicReference<>();
18 }

Listing 5.10: Structure of a CommitRequest.

analyzed, the most recent committed version is still validTxVersion.

• writeSet: This holds the set of VBox identifiers for the VBoxes written during the

transaction.

• isWriteOnly: Indicates whether the read set of the transaction is empty. Write-only

transactions will always be valid to commit at any point in time.

• benignCommits: Set of identifiers of commit requests that, even if committed ahead

of this request, will not affect this request’s validity.

The commit request attributes just described contain all the information that is sent

when broadcasting a commit request.42 Additionally, in each node, when a request is re-

ceived, the communications thread responsible for receiving commit requests sets the ref-

erence to a transaction, by calling assignTransaction(). This operation, shown

in Listing 5.11 on page 164, consults the COMMITS_MAP to determine whether the re-

quest corresponds to a transaction from the current node. This will decide the type

42When resending a commit request, the attributes writeSet and isWriteOnly are not included. Each
node keeps this information for requests that are considered UNDECIDED, just like it does with the set of benign
requests per request.
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1 class CommitRequest {
2 ...
3 void assignTransaction() {
4 Transaction tx = COMMITS_MAP.remove(this.commitid);
5 if (tx != null) {
6 this.transaction = new LocalCommitOnlyTransaction(this, tx);
7 } else {
8 this.transaction = new RemoteCommitOnlyTransaction(this);
9 }

10 }
11

12 void handle(Transaction helper) {
13 try {
14 this.tx.commit();
15 } catch (CommitException e) {
16 // discard exceptions from invalid commits
17 } finally {
18 if (getValidationStatus() == ValidationStatus.UNDECIDED) {
19 helper.notifyUndecided(this);
20 } else if (getValidationStatus() == ValidationStatus.VALID) {
21 helper.notifyValid(this);
22 }
23 ClusterUtils.tryToRemoveCommitRequestFromHead(this);
24 }
25 }
26 }

Listing 5.11: The main operations in a CommitRequest.

of CommitOnlyTransaction (COT, for short) that will be set in the transaction at-

tribute. A COT is a special-purpose transaction that re-enacts the commit section of a

JVSTM transaction. Its commit is different from the regular commit described in the previ-

ous section. The commit of a COT does not involve any distributed communication, and

it will perform only the node-local commit of the given transaction, which may include

helping other transactions ahead of it to complete, if necessary. The difference between

LocalCommitOnlyTransactions and RemoteCommitOnlyTransactions is that the

former have access to the instance of the originating transaction (tx), and so they will be

able to use the full write set to apply changes in memory when committing this transaction,

whereas the latter will just set NOT_LOADED_VALUEs in each VBox identified in the commit

request’s writeSet. In the following, I describe the commit algorithm of a COT, noting

where due, any differences between its two subtypes.
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There are two other attributes in the CommitRequest, whose value is only meaningful

on the nodes receiving the request: The validationStatus is always initialized to UNSET

and, during the handling of the request, it will transition to either VALID or UNDECIDED. The

next is a reference to the following CommitRequest to process. In each node, the queue of

commit requests is maintained using a strategy similar to the one used for the JVSTM’s ATR

list: The structure is a singly-linked list of requests, where each request holds a reference

to the next request. The communications infrastructure keeps a reference to the first and

last requests received. When a new request arrives it is added to the tail. When a request is

handled, the system tries to atomically advance the reference at the head (using a CAS), if

and only if, there is already another request and the request just handled is still at the head.

As noted earlier, the commit request’s handle(Transaction) operation is the en-

try point for executing a transaction’s request to commit. This method, shown in List-

ing 5.11 on page 164, invokes the commit() of the COT assigned to the request. The COT,

which is a subtype of JVSTM’s Transaction type, will transparently activate the com-

mit machinery of the lock-free JVSTM. The handle(Transaction) operation, silently

discards any CommitException thrown due to a failed validation. Instead, after execut-

ing the commit(), it notifies the helper transaction, of the outcome, by invoking either

notifyValid(CommitRequest) or notifyUndecided(CommitRequest). Lastly, it

tries to remove the current commit request from the head of the list of commit requests to

process. Notice that any transactions that may still refer an older commit request will always

be able to access all commit requests by iterating through their next reference. The com-

mit request currently at the head is relevant only for new transactions, as will be explained

in Section 5.3.4 on page 172.

As described in Section 4.2 on page 99, the lock-free commit of a transaction starts with

the validation phase. If it succeeds, then the transaction’s commitTxRecord is enqueued

and then written back, possibly with the help of other committing transactions.

The commit of a COT follows a similar sequence. The main difference is that, whereas

in the single-node JVSTM, each transaction would race with the others to validate itself

and enqueue its commitTxRecord in the ATR list, now the validation of the same COT

can be performed by any transaction that is helping to commit. This means that the COT’s

validation, and the creation and enqueueing of its commitTxRecord must take helping into

account.
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All COTs are processed in the same order by all helping transactions to determine their

validation status—the order used is the order of enqueueing of their commit requests. So,

when validating a COT, all COTs ahead have already been either decided VALID and enqueued

for write back, or discarded as UNDECIDED. This means that if a COT is deemed VALID to

commit, its commit version can be easily determined by looking at the version of the last

record enqueued for write back. Naturally, the algorithm must account for the case where

another helper concurrently enqueues a given COT’s commitTxRecord for write back, so as

to not mistakenly enqueue the same record multiple times.

The validation algorithm relies on the following two invariants:

I1 The commitTxRecord of a COT is always set before setting the COT’s validation status

as VALID.

I2 A validation status VALID is always set before attempting to enqueue the corresponding

commitTxRecord for write back.

The validation of a COT considers two cases: A write-only COT is immediately valid to

commit; for a read-write COT it is necessary to check whether its read version is still up

to date or, if not, to check whether each of the commitTxRecords enqueued after the

COT’s read version correspond to commits of transactions that are benign. The valida-

tion procedure of a COT ends when either (1) the status is determined to be UNDECIDED

and a CommitException is thrown, or (2) the status is determined to be VALID and the

commitTxRecord has been successfully enqueued for write back. The write back phase is

the same as described in Section 4.2.2 on page 102.

First, I will describe, in Section 5.3.3.1, the handling of the write-only case, which is

common to both cases. Then, in Section 5.3.3.2 on page 170, I describe the additional work

performed in the read-write case.

5.3.3.1 The Write-Only Case

Listing 5.12 on page 167 shows the main validation algorithm for a COT, which simply detects

the type of request and calls the appropriate action. Given that write-only transactions are

always valid to commit, the operation validateWriteOnly() needs only to assign the

commitTxRecord (line 14), to set the validation status (line 16), and to enqueue the record

for write back (line 17). To decide the version of its commitTxRecord, the validation gets
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1 class CommitOnlyTransaction extends Transaction {
2 ...
3 void validate() {
4 if (this.commitRequest.getIsWriteOnly()) {
5 validateWriteOnly();
6 } else {
7 validateReadWrite();
8 }
9 }

10

11 void validateWriteOnly() {
12 ActiveTxRecord existingRec = getLastEnqueuedRecord();
13 if (this.commitTxRecord == null) {
14 assignCommitRecord(existingRec.txNumber + 1, getWriteSet());
15 }
16 this.commitRequest.setValid();
17 enqueueForWriteBack(existingRec, this.commitTxRecord.getWriteSet());
18 }
19

20 ActiveTxRecord getLastEnqueuedRecord() {
21 ActiveTxRecord existingRec = LAST_COMMITTED_RECORD;
22 ActiveTxRecord nextRec = existingRec.getNext();
23

24 while (nextRec != null) {
25 existingRec = nextRec;
26 nextRec = nextRec.getNext();
27 }
28 return existingRec;
29 }
30

31 void assignCommitRecord(int txNumber, WriteSet writeSet) {
32 ActiveTxRecord record = new ActiveTxRecord(txNumber, writeSet);
33 compareAndSwapObject(this, FIELD_OFFSET_COMMIT_TX_RECORD,
34 null, record);
35 % this.commitRequest.setValid();
36 }
37

38 abstract WriteSet getWriteSet();
39 }

Listing 5.12: Validation of a write-only CommitOnlyTransaction.

167



Chapter 5 · Nonblocking TMM

the most recently enqueued record (line 12) and uses the next version number to create the

commitTxRecord: Regardless of whether existingRec is already written back, this is the

record after which to enqueue the next record.

It may be the case that when executing assignCommitRecord(int, WriteSet) the

CAS operation fails (line 33). This means that another helper has concurrently performed

the enqueueing. Notice that the test in line 13 prevents two commitTxRecords for the

same COT from being enqueued: By transitivity, the two invariants mentioned above ensure

that assigning a COT’s commitTxRecord must be done before attempting to enqueue it.

Also, the value of this.commitTxRecord is read (line 13) only after reading the most

recently enqueued record (line 12). So, when the commitTxRecord is seen as null, the

existingRec obtained cannot contain already this COT’s commitTxRecord. When call-

ing assignCommitRecord(int, WriteSet), the write set is obtained using the COT’s

abstract operation getWriteSet(). A LocalCommitOnlyTransaction will return the

full write set, whereas a RemoteCommitOnlyTransaction will return the write set whose

values are all the NOT_LOADED_VALUE. During the write back phase, this will affect the

values stored in the VBoxBodies committed to each VBox identified in the write set. The

write back algorithm, however, will be unaware of this difference.

The operation enqueueForWriteBack(ActiveTxRecord, WriteSet), shown

in Listing 5.13 on page 169, performs two main tasks: First it ensures the required map-

pings for the transaction’s version, and then it attempts the actual enqueueing. Executing

mapTxVersionToCommitId(int, UUID) is necessary to enable the reload of VBoxes

(cf. Section 5.2.3 on page 148). Notice that this last operation is responsible for maintaing

the mapping both in memory and in the TDR, and that it minimizes the accesses to the TDR,

by first checking whether the mapping is already present in memory. If so, then it means that

it must also be in the TDR already. When multiple transactions attempt to help to enqueue

the same record, this helps to prevent having many transactions store the same mapping

to the TDR. The operation mapTxVersionToCommitRecord(int, ActiveTxRecord)

is a simple in-memory mapping that will allow, later, for the operation that validates read-

write transactions to immediately fetch the ActiveTxRecord for a given version (cf. line 4

of Listing 5.14 on page 171). The operation trySetNext() was defined in Listing 4.1 on

page 101: It is attempted only if the commitTxRecord to enqueue is the logical immediate

successor of the given record.43

43Otherwise, the required enqueueing was already performed. For example, the given record may not be
the immediate predecessor, when the operation validateWriteOnly() initially obtains the existingRec,
already after some other helper has enqueued the current commitTxRecord.
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1 class CommitOnlyTransaction extends Transaction {
2 ...
3 void enqueueForWriteBack(ActiveTxRecord rec, WriteSet writeSet) {
4 int version = this.commitTxRecord.txNumber;
5 mapTxVersionToCommitId(version, this.commitRequest.getId());
6 mapTxVersionToCommitRecord(version, this.commitTxRecord);
7 if (rec.txNumber + 1 == this.commitTxRecord.txNumber) {
8 rec.trySetNext(this.commitTxRecord);
9 }

10 }
11 }
12

13 class Transaction {
14 ...
15 void mapTxVersionToCommitId(int version, UUID commitId) {
16 if (getCommitIdForVersion(version) == null) {
17 persistTxVersionToCommitId(version, commitId);
18 TX_VERSIONS_MAP.putIfAbsent(version, commitId);
19 }
20 }
21 }

Listing 5.13: Enqueuing of a valid CommitOnlyTransaction for write back.
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The details of the operation persistTxVersionToCommitId(int, UUID), used by

mapTxVersionToCommitId(int, UUID), are not shown. This operation is similar in

structure to persistWriteSet(UUID) from Listing 5.1 on page 149, except that it

performs a single tdr.put(version, commitId) to store the mapping between the

version and the commitId.

5.3.3.2 The Read-Write Case

The algorithm for validation of a read-write COT is shown in Listing 5.14 on page 171. In

comparison to the validation of a write-only COT, the additional aspects to take into con-

sideration have to do with determining the validation status of the COT. If the transaction’s

validation status is seen already set (line 8 and line 11), then the operation just acts accord-

ingly, either ensuring it gets enqueued for write back or throwing a CommitException,

respectively for the VALID and the UNDECIDED status. If the validation status is yet UNSET

(line 13), then the helper must first determine the validation status of the request. To do

so, this helper iterates (line 15) all commit records following the record for which the trans-

action is known to be valid (existingRec, first obtained in line 4), and checking whether

all more recent commit records correspond to commits of requests that are listed as benign

in this transaction’s commit request. If so, then this COT is set VALID; otherwise, it is set

UNDECIDED and the CommitException is thrown. This verification loop must also account

for the possibility that, meanwhile, another helper concurrently enqueues a record for this

request, which means that it is necessarily valid and no more checking is needed (line 17).

Notice that, unless the operation validateReadWrite() throws an exception, it

will always attempt to execute enqueueForWriteBack(ActiveTxRecord, WriteSet)

(line 31), even when the validation status is already seen as having been set by another

helper. The general idea when designing a helping algorithm is that each participant must

do its own part in ensuring that every sequence of an algorithm gets accomplished. It would

be wrong to assume, just because some other transaction already set the validation status

of this request, that it has already enqueued the commitTxRecord, even though, proba-

bly it already has. But, if so, then this transaction will detect it when attempting itself the

enqueueing of the record. The same reasoning applies to any part of the helping algorithm,

whenever a direct dependency between two steps cannot be established.
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1 class CommitOnlyTransaction extends Transaction {
2 ...
3 void validateReadWrite() {
4 ActiveTxRecord existingRec =
5 getCommitRecordForVersion(this.commitRequest.getValidTxVersion());
6

7 ValidationStatus status = this.commitRequest.getValidationStatus();
8 if (status == ValidationStatus.VALID) {
9 existingRec = getForwardRecord(existingRec,

10 this.CommitTxRecord.txNumber - 1);
11 } else if (status == ValidationStatus.UNDECIDED) {
12 throw new CommitException();
13 } else { // ValidationStatus.UNSET
14 ActiveTxRecord nextRec = existingRec.getNext();
15 while (nextRec != null) {
16 UUID commitId = getCommitIdForVersion(nextRec.txNumber);
17 if (commitId.equals(this.commitRequest.getId())) {
18 break;
19 } else if (!this.commitRequest.getBenignCommits()
20 .contains(commitId)) {
21 this.commitRequest.setUndecided();
22 throw new CommitException();
23 }
24 existingRec = nextRec;
25 nextRec = nextRec.getNext();
26 }
27 assignCommitRecord(existingRec.txNumber + 1, getWriteSet());
28 this.commitRequest.setValid();
29 }
30

31 enqueueForWriteBack(existingRec, this.commitTxRecord.getWriteSet());
32 }
33

34 ActiveTxRecord getForwardRecord(ActiveTxRecord record, int version) {
35 while (record.txNumber < version) {
36 record = record.getNext();
37 }
38 return record;
39 }
40 }

Listing 5.14: Validation of a read-write CommitOnlyTransaction.
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1 class Transaction {
2 ...
3 void applyPendingCommitsAndUpgradeTx() {
4 this.lastProcessedRequest =
5 helpCommitAll(ClusterUtils.getCommitRequestAtHead());
6

7 upgradeTx(LAST_COMMITTED_RECORD);
8 }
9 }

Listing 5.15: The update algorithm that runs when starting a new transaction. It
helps to process any pending requests and then upgrades the transaction’s own read
version.

5.3.4 Starting a New Transaction

In NbTMM, the beginning of a new transaction shares the same concerns that were described

in Section 3.6.4 on page 68, namely the effort to begin the transaction in the most recent

version possible, and the need to advance the node’s local state, even when there are no

other committing write transactions to aid in such task. So, when beginning any transac-

tion the system invokes the operation applyPendingCommitsAndUpgradeTx(), shown

in Listing 5.15: It executes the same helping that is performed when committing write trans-

actions, by calling helpCommitAll(CommitRequest). This time the call uses the commit

request at the head of commit requests queue and, when this call completes, it will initialize

the transaction’s reference to the lastProcessedRequest. This ensures that, from this

point onwards, the transaction will iterate all commit requests that further appear between

its start and its completion, which allows it to improve the list of possible benign transactions

to send in its own commit request, in case this is a write transaction.

After processing any pending requests, the transaction upgrades its own read version to

the most recent version. Notice that the transaction’s read version will include at least any

version produced by requests that it may have helped to process. However, it is possible that

the transaction upgrades to an even more recent version if between the completion of line 4

and the read of the LATEST_COMMIT_RECORD in line 7, some new request arrives and is

processed by another helper.
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5.4 Experimental Evaluation

I repeated the experiments from Section 3.8 on page 77, this time using NbTMM. By using the

same test environment with exactly the same execution configurations, the results obtained

for NbTMM are directly comparable with the results obtained previously for the other imple-

mentations. First, I present and discuss the results comparing TMM with NbTMM, and then

I compare NbTMM with the same standard implementation approaches used in Chapter 3.

Globally, the results show notorious improvements over the lock-based design, most vis-

ible in the clustered scenarios. Nevertheless, there are still some scalability limitations when

stressing the commit algorithm in the clustered configurations (with higher write percentages

or higher number of nodes). To better understand the source of these limitations, I perform

additional measurements, in particular:

• I instrument NbTMM’s commit algorithm to analyze how each phase performs, and

show that the performance of the underlying TDR greatly affects the commit algo-

rithms’s overall performance, by dominating the total execution time, and increasing

its latency by considerable amounts of time. This is caused by delays in the execu-

tion of the underlying components that are also aggravated when the size and amount

of messages exchanged increases—a consequence of increasing the workload’s write

percentage.

• To support the conclusions just drawn about the effect of the TDR on the performance

of the commit algorithm, I developed and tested the implementation of a Mock TDR that

eliminates all TDR-related communication costs. The resulting algorithm, which still

uses all elements of the commit algorithm, including the communication with the Se-

quencer, scales continuously for all workloads tested, albeit at different rates, depend-

ing on the workload, convincingly showing that the algorithms in NbTMM effectively

scale, in spite of being limited by the performance of the underlying components.

I complete the experimental evaluation with two more groups of experiments: First, be-

cause I consider important to perform a working demonstration of NbTMM clustered in more

that one physical computer, I deploy the experiments in a real cloud computing grid, namely

FutureGrid, using one node of the grid to execute each application server. Lastly, I exper-

iment with using data distribution in the TDR, instead of data replication. Even though I

have argued before, in Section 3.8.1 on page 79, that this configuration is less fair to the
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Figure 5.2: TMM versus NbTMM: Total throughput for the single-node executions
using 1% write transactions.

other approaches, its purpose is exactly to demonstrate the benefits of NbTMM’s adaptive

caching, which always stores the node’s working set locally, regardless of the data location

in the TDR.

5.4.1 TMM versus NbTMM

In Figure 5.2 to Figure 5.4 on pages 174–175, I present the results for the single-node

executions. The results obtained in the cluster executions appear in Figure 5.5 to Figure 5.7

on pages 176–177. As before, each percentage of write transactions is grouped in a separate

chart. All executions of the NbTMM-based implementations include the deployment of the

Sequencer node, even for the single-node configurations, with commit requests being pushed

to the Sequencer for publication.

In a single node, the results for NbTMM are, overall, much identical to their counter-

part results for TMM. In fact, for 1% write transactions, there are no noteworthy differences

whatsoever. This sustains the belief that, for scenarios with very low commit contention, the

lock-based approach is still a viable solution. For the 5% write transactions configuration,

there starts to appear a slight improvement on NbTMM, in particular for higher thread counts
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(above 24). At 20% write transactions, the improvements in NbTMM are easily distinguish-

able from TMM: Interestingly, for low thread counts (up to 8), TMM performs better, and it

even achieves the best throughput among all implementations, at 16 threads, when using

TMM+EHC. Generally, for low thread counts in a single node, TMM appears identical to or,

in some cases, better than NbTMM. This is likely due to the higher algorithmic overheads of

the nonblocking algorithm, when compared to the much simpler lock-based algorithm that

is faster to execute in scenarios with minimal, or nonexistent, lock contention. As thread

counts increase, NbTMM eventually overtakes TMM’s throughput, due to its higher scala-

bility. Also noteworthy is that the nonblocking implementation appears somewhat unable

to continuously improve the application’s throughput for very high thread counts. This is,

partly, an effect of the load on the test system. The machine has 48 physical cores: On the

one hand, already at 40 threads, the total number of threads executing, exceeds the ma-

chine’s parallel processing ability, because there are other infrastructural threads competing

for the resources, such as the GC’s. On the other hand, the load put on these infrastructural

threads on a single machine is much higher than if it was distributed by several machines,

because the cost of the GC grows more than linearly with the load. For example, the memory

allocation and collection rates on a single machine running 40 threads will place a much
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Figure 5.8: NbTMM versus IMDG: Total throughput for the clustered executions
using 1% write transactions.

higher load on the GC, than if the same number of threads was running distributed through

10 JVMs running 4 threads each.

When looking at the clustered executions—the main driver for designing NbTMM—it is

clear that the nonblocking approach is able to improve the application’s performance even

further. Already at merely 1% write transactions, the speedup with the NbTMM-based im-

plementations, using 12 nodes, ranges from approximately 2.5 times (ISPN) up to 12 times

(EHC). Mostly, the performance of TMM-based implementations starts low and then further

decreases as more nodes are added to the cluster, whereas the performance of NbTMM-based

implementations starts close or above TMM’s, is able to increase for some nodes, and then

tends to stabilize when unable to improve after a given number of nodes, which varies, de-

pending on the workload: At 20% write transactions, the absolute performance improvements

are notorious, but the scalability is compromised, with even the NbTMM+EHC implementa-

tion tending towards a performance drop; as the percentage of write transactions is reduced,

the scalability increases—something that does not occur, even for the 1% workload in TMM.
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5.4.2 NbTMM versus Standard IMDG

The results from Section 3.8.2 on page 81 show how TMM significantly improves the per-

formance over the standard approaches, for the single-node configurations. In the previous

section, the comparison for the same settings shows approximate performance results be-

tween TMM and NbTMM in a single node. Together, these data clearly show that NbTMM

is also much better in a single-node deployment than the standard approaches, so that re-

peating the single-node comparison, now between NbTMM and other IMDGs, seems of little

additional value.

So, in this section, I shall present the comparison between NbTMM and the other IMDGs,

for the clustered executions, which still displays mixed results, even though overall NbTMM

tended to be much better than TMM in such configurations. Figure 5.8 to Figure 5.10 on

pages 178–179 display the comparison for each workload. Notice that there are no new

values presented in these charts: They simply result from the juxtaposition of data from the

clustered executions of NbTMM, shown in the previous section, with the clustered executions

of IMDGs, shown in Section 3.8.2 on page 81, so that the observations made in those sections,

pertaining these configurations, apply equally here.

In the comparison from Chapter 3, TMM-based implementations were not able to improve

on their respective IMDG standard implementations, apart from a very reduced set of cases

in the workload with 1% write percentage—mainly, ISPN up to 10 nodes. When considering

NbTMM, however, there are very different results: It consistently performs better than EHC

and HZ executions, even up to 20% write transactions, which is a considerable improvement.

In particular, for the 1% write transactions workload, all NbTMM implementations outper-

form the others. For 5% NbTMM starts much better than ISPN, but they end up matched,

and for the 20% case, NbTMM is not able to improve over ISPN at all.

Although, overall the performance results have improved a lot from TMM, and are even

better than those of the IMDGs in several cases, it is noticeable that the tendency appears to

be for the derivative function of each NbTMM plot to start positive, but tending towards zero:

Initially throughput increases as more nodes are added, but the increase in performance

brought by adding new nodes is each time less, to the point where, above a certain threshold

(which varies with the workload and the underlying TDR), adding more nodes does little

or nothing to improve performance. At worst, in some cases total performance even starts

to drop a little. This is undesired and, at least in theory, unexpected: Taking into the

account that the algorithms in NbTMM are nonblocking, the intuitive idea would be that,
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even though latency might increase, thereby causing a reduction in throughput per thread,

performance should be able to continue to scale with the number of threads. The fact that

this does not occur, leads to the intuition that some of the external components, on which

the solution is laid—the TDR and NbTMM’s communication infrastructure based on ZMQ—

could be the source of some contention. ZMQ was chosen as the underlying communication

infrastructure, because it has shown very low latency and high throughput in previous

benchmarks (cf. Section 5.3.1 on page 154), which turned my attention to the TDR as more

likely to be the source of contention. Another factor pointing towards this educated guess,

is that overall application performance is affected when changing the TDR.

5.4.3 Profiling the Commit Algorithm

With the purpose of identifying where the potential bottleneck may reside, I instrumented

the commit algorithm with probes to measure the total commit time, as well as the time that

transactions spend executing each of the commit steps, such as validation, persist the write

set, broadcast a commit request, help to commit a transaction, and persist the mapping of

a version to a commit identifier. Most of the commit times that were measured, displayed

little variations across different workload configurations, except for the times related to com-

munications with the TDR. Figure 5.11 to Figure 5.12 on page 182 display the average total

commit time per transaction—shown as the height of each bar in the plots—for each of the

write workloads in the clustered configurations. Every bar comprises two segments, each

representing:

1. The time spent making calls to the TDR, which includes only the time used in the

following two operations:

(a) Persisting the write set of the transaction: Operation persistWriteSet() in-

voked in line 9 of Listing 5.5 on page 156.

(b) Persisting the mapping with the commit identifier to the TDR: Operation

persistTxVersionToCommitId(int, UUID) invoked in line 17 of List-

ing 5.13 on page 169.

2. The remainder of time spent in the commit of a transaction. It is relevant to mention

that this includes the time spent in calls to the communication infrastructure.
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Figure 5.11 on page 182 shows the results obtained for all the clustered workload con-

figurations using the implementation NbTMM+ISPN. It is clearly visible that the time taken

by all operations excluding the time spent in calls to the TDR is approximately the same

for all workloads, with minor variations, whereas the time spent interacting with the TDR

greatly increases as the number of nodes increases, regardless of the workload. I speculate

that this is likely due to the need to synchronize the state of the nodes when data is written,

which is imposed by NbTMM to ensure that data is correctly available on any other node after

the underlying write returns. Often, IMDGs are built with a bias towards data distribution,

which means that the number of nodes to keep in synchronization for each datum update

is usually limited to a number smaller than the size of the entire cluster. NbTMM’s design

stresses the synchronization protocols of the TDR, especially under full replication. Also,

the fact that performance of the calls to the TDR does not seem to depend on the work-

load, is consistent with the performance of the ISPN-only implementation, which displays

little performance variations, when changing the write percentage (cf. the previous plots for

ISPN-based throughput in the clustered configurations).

The performance of EHC and HZ are overall similar, and both are much worse than

ISPN. In Figure 5.12 on page 182 I repeat the same measurements, now taken with for

NbTMM+EHC. These confirm the same observations as before. Interestingly, here the time

spent in calls to the TDR is much higher (about four times more), but the remainder of the

commit algorithm takes approximately the same time as it did with NbTMM+ISPN (around

5ms on average).44 Again, this is consistent with the idea that the overall performance of the

commit algorithm is mostly affected by the concrete TDR. These results also help to explain

the better performance of the ISPN implementation over the others.

5.4.4 The Mock IMDG

Considering the previous analysis, a question that may still linger is whether the time spent

in calls to the TDR is the sole factor limiting NbTMM’s overall scalability. To answer such

question, I developed another RadarGun plug-in extension to simulate an IMDG that does

not involve any synchronization costs between its nodes. In practice, this is a mock imple-

mentation that does not send any updates to the other nodes. This can be done without

affecting the semantics of the application under test, because it leverages on the fact that the

workloads that I use, as mentioned in Section 3.8.1 on page 79, access disjoint data: Each

44The small variations among different workloads, which were observed in NbTMM+ISPN, are less visible in
NbTMM+EHC, because the vertical axis spans a greater interval in the latter case.
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thread in each node accesses random keys within a predefined set that does not intersect

with any other thread’s key set.

Thus, the implementation of RadarGun’s CacheWrapper by the Mock IMDG could

simply become an empty operation. I need, however, to introduce delays on the

CacheWrapper’s operations, to simulate the delays in reading and writing entries, lest the

simulated IMDG display an unbeatable performance in terms of its measured throughput.

Taking a random set of results from ISPN in a single node, I computed the average time taken

by the read and write operations, and then introduced those delays as active waiting cycles in

the implementation of the Mock. Each get introduces a delay of 2.8 microseconds and each

put introduces a delay of 67 microseconds. Also, there is an approximately constant delay of

64 microseconds per transaction, which I added to the operation commitTransaction().

The implementations of the remaining operations is empty during the benchmarking stage.

To properly execute RadarGun’s stages, I had to introduce additional complexity to the

Mock implementation. Such was necessary because, immediately after starting each node of

the cluster, RadarGun’s master node instructs all other nodes to validate their presence in the

cluster, which entails having each node write to a predefined key, and all nodes confirming

that they can read the keys written by all other nodes. So, in fact, the implementation

of the Mock must behave as a real TDR during the initial bootstrap phase. My solution

was to adopt the ISPN’s CacheWrapper implementation and modify it so that during a fixed

number of operations it uses the real Infinispan IMDG, and then it switches to the mock mode

with the simulated operations, described above. This provides enough time for the nodes to

correctly start, and eventually, during the warm-up phase, the operations transparently stop

making calls to Infinispan’s data grid. By the time the real benchmarking phase begins, the

underlying IMDG is no longer being used.

Figure 5.13 on page 185 presents the results comparing the best performance possible for

the MOCK implementation—the read-only scenario, shown as MOCK-0—with the execution

of the NbTMM+MOCK implementation for the workloads ranging from read-only up to 20%

write transactions. Notice that whereas in the MOCK there is no network communication

involved whatsoever during the benchmark stage, in NbTMM there is still the communication

of commit requests to all nodes, broadcast via the Sequencer. In spite of that, the NbTMM

implementation scales consistently and is able to provide much higher throughputs than the

baseline MOCK-0, even for 20% write transactions. The absolute throughputs decrease as

the write percentage increases, mostly for two reasons: (1) There is an increase in the network

communications to broadcast commit requests, which occurs increasingly often, and (2) the
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Figure 5.13: NbTMM versus MOCK: Total throughput for the clustered executions
with multiple workloads.

queue of commit requests to process in each node also increases, while maintaining the

same number of application threads per node (four), which requires more helping effort per

transaction.

These results clearly show that the nonblocking algorithms proposed in NbTMM scale

and consistently improve the application’s throughput, absent the limitations imposed by

the calls to the TDR’s operations.

Given that the performance of the calls to the TDR is the source of such limitations, yet

another question arises: How does it affect TMM? Recall that the experimental results from

TMM in Chapter 3 show that, while the contention on the lock is low, it performs well—

which is mostly visible in a single node. Under these circumstances, one might question

whether TMM would be able to outperform NbTMM, assuming the zero-cost to use the TDR.

In Figure 5.14 on page 186, I present the comparison between TMM and NbTMM using the

MOCK TDR. Even without the cost of the calls to the TDR, the network communications

involved while the lock is acquired take long enough so that contention still occurs: This is

visible in that, again, NbTMM is consistently much better than TMM for all write workloads.

As expected, they perform identically in the read-only scenario. Then, as the rate of write
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Figure 5.14: TMM versus NbTMM using MOCK. NbTMM is consistently better,
which is more noticeable as the percentage of writes increases.

transactions increases, so does the performance gap between the two designs.

5.4.5 FutureGrid Cloud Platform

All results presented up to this point have been taken in a single machine with 48 cores.

When deploying multiple nodes, these were communicating through the kernel’s loopback

device. To assess whether this has any relevance on the results obtained, I also repeat some

of the tests in a cloud computing environment provided by the FutureGrid project.45

FutureGrid is built from a geographically distributed set of heterogeneous computing

systems. The tests were executed in the India cluster, hosted at the Indiana University, USA.

This cluster uses the OpenStack cloud computing software to provide an Infrastructure as a

Service (IaaS) platform. It provides several Virtual Machine (VM) configurations to use. The

experiments with RadarGun executed on a VM-based environment, deploying each applica-

tion node in a separate VM. Each VM is configured with 8GB of main memory, 4 Intel X5550

CPUs, and all nodes are connected using an InfiniBand network. For some reason that has

eluded me, I was not able to correctly configure Hazelcast in FutureGrid, as the members of
45https://portal.futuregrid.org/
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Figure 5.15: NbTMM versus IMDG in FutureGrid: Total throughput for the clustered
executions using 1% write transactions.

the cluster were never able to find each other. For this reason, the following results include

only the plots for ISPN and EHC.

In Figure 5.15 to Figure 5.17 on pages 187–188, I present the results obtained when

running the three write workloads in FutureGrid, respectively from 1% up to 20%. These

results are extremely similar to those presented previously in Figure 5.8 to Figure 5.10 on

pages 178–179 for both the IMDGs and their corresponding NbTMM-based implementations.

If anything, I would comment that there is a slight performance improvement favoring the

IMDG-based implementations, but overall the results are identical, showing that the test

environment, based on a single machine, did not skew the results.

5.4.6 Using Data Distribution

When I presented the base configuration of all experiments, in Section 3.8.1 on page 79, I

justified that using full data replication was more appropriate than distribution, to compare

my approach with the others, because the workloads were read-dominated and the caching

mechanism from my design operates based on accessed data and not on their location in

the TDR. The expectation is that, when using data distribution in the TDR, the performance
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Figure 5.16: NbTMM versus IMDG in FutureGrid: Total throughput for the clustered
executions using 5% write transactions.
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Figure 5.18: NbTMM versus ISPN in distributed mode. Only two nodes store each
datum.

improvements from using NbTMM for read-dominated workloads should be even higher.

Nevertheless, there is an important trade off to consider: When running in distributed mode,

the IMDG makes fewer calls to synchronize its state, whereas NbTMM’s commit protocol

must still send commit requests to all members of the cluster. This could negatively affect

the expected performance gains.

In this section I pick the best-performing IMDG among the ones tested—ISPN—and con-

figure it to work in distributed mode, using two nodes for replication of each datum. Addi-

tionally, ISPN uses an L1 cache that stores locally the keys read from remote nodes.

Figure 5.18 presents the performance results obtained for each of the write workloads,

using both ISPN and NbTMM+ISPN. As expected, for these workloads the performance of

ISPN using distribution is worse than what was obtained under full replication. This worse

performance affects NbTMM, which also performs worse than before when it was using a

TDR with full replication. Nevertheless, the relative improvements brought about by using

NbTMM are actually higher that before. Considering the relative performance improvements

of using NbTMM+ISPN over ISPN, then Figure 5.19 on page 190 shows the relative increase in

performance between using distribution and replication. In all cases, all ratios are above 1,
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Figure 5.19: Relative performance improvements obtained with NbTMM when the
TDR uses data distribution instead of full replication.

meaning that the improvements of using NbTMM over a distributed configuration are higher

than the improvements obtained when using NbTMM over a replicated configuration.

Even tough NbTMM pays a higher price than ISPN to commit, because in addition to

waiting for ISPN to commit its own state, it must still contact all nodes to send the commit

request, the read operations from NbTMM’s cache are much faster and largely compensate for

the cost of the writes, because reads occur much often. ISPN’s L1 cache allowed it to reduce

the number of remote lookups by maintaining a local copy of the data but, nevertheless, its

reads are still much slower.

5.5 Summary

The goal of this chapter is to improve the design of TMM for the clustered scenarios. To

this effect, I combine the main concepts and principles from Chapter 3 and use the lock-free

JVSTM presented in Chapter 4 to design NbTMM, a nonblocking alternative to TMM.

The structure of the presentation in this chapter is similar to that of Chapter 3, in which

I first overview the main aspects of the solution, and then present the algorithmic details of
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each element. Some parts of the solution proposed in Chapter 3 have been reused, others

extended or completely redesigned to use nonblocking algorithms in all elements of NbTMM.

After presenting NbTMM, I conduct several experiments to assess the performance of

this new design. I start by repeating the experiments from Section 3.8 on page 77 with

NbTMM. The single-node executions show that performance is approximately identical to

that of TMM, which is understandable given that TMM’s lock-based solution already proved

usable in a single node. The executions in clustered scenarios provide mixed results: In spite

of clearly improving over TMM, as well as over a few IMDGs, the most striking aspect was

that scalability did not match the theoretical expectations.

The previous observations led to a more detailed analysis of the commit algorithm. After

profiling its execution it became apparent that the duration of the calls to the TDR increases

as the number of nodes increases, which limits NbTMM’s scalability.

Tests performed with a simulation of a TDR that does not incur into communication costs

reveal that when these costs are removed application performance is able to scale with the

number of nodes, confirming the limitations imposed by calls to the TDR during the commit

of write transactions.

The evaluation concludes with two additional results: (1) The confirmation of the previous

results using a cloud computing platform, and (2) a proof-of-concept demonstration that the

potential for improving application performance with NbTMM is higher when the underlying

TDR uses data distribution instead of full replication.

The results also show that NbTMM is not a complete replacement for TMM. Instead it is a

complement, and each can be used whenever it provides the best performance: Even though

NbTMM is overall better for improving the performance of clustered applications, TMM’s

simpler design still allows it to outperform NbTMM, mostly in single-node configurations.
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6Conclusions

In this final chapter, I summarize the main results and contributions of this dissertation,

and I present some ideas for future research that stem from this work’s current state of

development.

6.1 Main Contributions

The work in this dissertation stems largely from the perception that, often, developers need

to overcome existing limitations in the semantics of the transactional systems, by tangling

into application logic the necessary verifications to ensure correct executions of concurrent

transactions. Additionally, the current multitiered layout of enterprise applications increases

the difficulty to develop strongly consistent transactional systems that are capable of offering

acceptable performance, in part because complex application logic executes in a compo-

nent that is separate (even by a different tier) from the component that ultimately ensures

transactional semantics.

The primary goal of this dissertation is to improve the consistency guarantees that the

transactional system provides to the programmer, ideally without sacrificing performance.

There are some factors that have been key to enable such work:

• Recent technological advancements in hardware have brought affordable many-core

systems with large amounts of main memory. These allow application servers to process

many concurrent requests and operate locally over large amounts of data.

• Research on STM, focusing on strong consistency for in-memory transactions.

• Nonblocking programming techniques that take advantage of parallel architectures.

• Observation of the data access patterns in enterprise applications, showing predom-

inantly read-dominated workloads (less than 5% write transactions in the use cases
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presented in Chapter 2) and very few conflicting operations within concurrent write

transactions (less than 2%).

The combination of these factors has enabled the development of this work’s main con-

tribution: The design of a middleware that provides strong transactional consistency while,

at the same time, being able to improve the performance of the typical read-dominated work-

loads observed in enterprise applications.

In Chapter 3, I presented such design together with its complete implementation. The

results obtained from the experimental evaluation have revealed striking improvements to

the performance of read operations, and even notorious results for workloads with write

percentages as high as 20%.

These good results, however, apply only to single-node deployments. The usefulness

of this design in a clustered environment is exclusively for the sake of providing strong

consistency. While, by itself, it may be a sufficient reason to use this design in a very small

cluster, greatly increasing the number of nodes is of little use, because this design lacks

scalability, given that it is based on the JVSTM’s lock-based approach to the commit phase.

Following these first results, I have concentrated my attention on rethinking the initial

design, with the purpose of improving it for the clustered environment, while maintaining

its fundamental design principle—to embed transaction control into the application using a

strongly consistent STM. To this effect, I undertook two main tasks: First, I redesigned the

lock-based JVSTM into an efficient lock-free STM. This contribution resulted in a completely

usable standalone STM implementation, which has been used already to pursue other re-

search directions, e.g. [Diegues and Cachopo, 2013; Carvalho and Cachopo, 2013]. To the

best of my knowledge, this is the first entirely lock-free implementation of a multi-version

STM. Second, I took the lock-free JVSTM as a starting point, and proposed a new middle-

ware design, this time using a nonblocking approach, driven by the lock-free JVSTM. The

experimental evaluation of the new implementation supported the following conclusions:

• The single-node executions were generally similar in performance to that of the initial

design. Nevertheless, in scenarios that were less strenuous for the commit algorithm,

the simpler lock-based solution still provided for the best application performance.

• The clustered executions showed improved performance, even though its scalability

was still somewhat affected.
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• Further profiling of the nonblocking commit algorithm and experimentation with a

simulation of the underlying TDR revealed that this new design effectively allows for

performance to scale when increasing the number of nodes, albeit its performance is

limited by the cost of the calls to the TDR.

• If available memory supports it, and taking into account that operations are read dom-

inated, a configuration using a replicated TDR allows for better overall application

performance. In spite of that, if some constraints impose data distribution in the TDR,

then the measurements taken, indicate that this middleware applied to a distributed

TDR improves the performance even more than when it is applied to a fully replicated

TDR, making it a possible choice in both scenarios.

Finally, a side contribution of my work has been the presentation, in Chapter 2, of

digested information about the workload patterns, collected over several years, of two real-

world enterprise applications—FénixEDU and •IST—which I believe to be representative of

a large class of applications, thus providing motivation for the practical applicability of my

work.

6.2 Future Work

Both middleware designs that I describe in this dissertation are fully implemented and opera-

tional. However, there is still much room for improving them in different areas. The following

are some ideas for possible improvements and future research directions, in no particular

order.

Improve the properties of the distributed middleware. In this dissertation, I dedicate

my attention to the algorithmic aspects of the middleware aiming to support strongly con-

sistent transactions in enterprise applications, which is based on extending an STM with

the required mechanisms to support persistent state and clustered deployment. I assume

a reliable underlying communication’s network and I do not delve into the complexities of

distributed systems with regards to properties such as reliability and availability. For ex-

ample, in TMM if a node holding the global lock crashes, then the commit of further write

transactions will block indefinitely, whereas in NbTMM if a node crashes, the others will be

able to continue without it. However, if instead of a full crash, a node is just temporarily

disconnected and looses some commit requests it will become out of sync and, as it continues
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to operate in the cluster, it will likely affect the correctness of future transactions, by vali-

dating transactions in an incorrect state. I consider that all issues related to the distribution

aspects of the proposed middleware clearly present relevant research topics, which would

contribute further to enhance its qualities.

Design a NbTMM-friendly TDR. As identified in the experimental evaluation of NbTMM,

its scalability is affected by how the calls to the TDR perform. However, there are specific

characteristics about the operations that NbTMM performs that could be leveraged to op-

timize the internals of the TDR. For example, writes never conflict. Any regular TDR will

be unaware of this fact and most likely incur into unnecessary costs to check for possible

conflicts among concurrent transactions. Also, different nodes may attempt to write the

same mapping from a transaction’s version to its commit identifier, concurrently. On the

one hand, this may cause a (semantically false) conflict to be detected in the TDR, leading to

a costly restart of the underlying operation. On the other hand, the TDR may simply push

the overwrites of the same key to all other nodes, without realizing that the value is the same

and, thus, it is unnecessary to resend it. I strongly believe that a customized TDR, optimized

for NbTMM’s access characteristics, would greatly reduce its usage costs, mainly by being

able to perform better in each node, and by reducing the number and payload of its network

communications.

Provide middleware-specific object-oriented support. When starting to present the mid-

dleware, I defined a Repository abstraction that contained a minimum set of operations

common to all underlying storage systems, allowing me to abstract from the specificities of

each TDR. This abstraction also represented the API used by the application’s business logic

to access its data, either to read or write. However, domain-rich and complex enterprise

applications are often developed using an object-oriented approach, and they use richer con-

cepts for modeling their data structures, such as entities, attributes and relationships. In

particular, data navigation may start with a key-based query to obtain some object reference,

and then proceed by following object references. To smooth the integration of this middleware

in such applications, instead of requiring the development of an ORM-like layer that can con-

vert object navigation into calls to the bare Repository interface, it makes sense to enrich

this middleware with specific object-oriented support. In fact, the Fénix Framework46—which

was initially extracted from FénixEDU—is already several steps into this direction, by pro-

viding an object-oriented Domain Modeling Language (DML) that can be used to generate

domain entities and relationships, which in turn provide a transactional shared state that is

46http://fenix-framework.github.io/
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supported using JVSTM’s VBoxes, and whose object navigation transparently interacts with

the transactional middleware. I have been involved with the recent restructuring of the Fénix

Framework, in the pursuit of this goal already. Even though such work has fallen out of the

scope of this dissertation, it is a path that I intend to continue to follow.

Develop algorithms for garbage collection in the TDR. The design I proposed keeps all

versions in the TDR. Even though this has a practical utility, such as executing transactions

that access past versions of the application’s data, which could be used, for example to audit

an application, there may be usages where it is desirable to delete unaccessible versions

from the TDR, much like they are already garbage collected from main memory. How to best

design GC algorithms for persistent data is another interesting open research issue.

Optimize the loading of older data from the TDR. The algorithm used by NbTMM to

access any version of a datum to load it into main memory requires keeping a map of trans-

action versions to commit identifiers, and to consult this map before attempting to read a

VBoxBody. Especially when accessing older versions of a datum, this mechanism can intro-

duce a significant overhead on the reload operation. I have given some thought to this issue,

and even started to design an algorithm for it. However, in the experiments I undertook, this

has never presented a performance bottleneck, for which reason it has been left as a future

improvement.
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