
Strongly Consistent Transactions	

for Enterprise Applications

Sérgio Miguel Martinho Fernandes

July 4th, 2014

Using Software Transactional Memory to Improve Consistency	

and Performance of Read-Dominated Workloads

Consistency Matters

• Concurrent programming is difficult	

!

• Strong consistency makes it easier

“To be sure of correctness you should always 	

 use the serializable isolation level.” 	

!

!

!

!

!

!

!

!

!
-- Martin Fowler (PoEAA, 2002)

“To be sure of correctness you should always 	

 use the serializable isolation level.” 	

!

!

!

!

!

!

!

!

!
-- Martin Fowler (PoEAA, 2002)

So... why don’t we always enforce it?

“To be sure of correctness you should always 	

 use the serializable isolation level.” 	

!

“[…] choosing serializable really messes up the	

 liveness of a system, […] you often have to reduce	

 serializability […] to increase throughput.”	

!

!

!

!

!
-- Martin Fowler (PoEAA, 2002)

“To be sure of correctness you should always 	

 use the serializable isolation level.” 	

!

“[…] choosing serializable really messes up the	

 liveness of a system, […] you often have to reduce	

 serializability […] to increase throughput.”	

!

“You have to decide what risks you want take and	

 make your own trade-off of errors versus	

 performance.”	

!

-- Martin Fowler (PoEAA, 2002)

C
on

si
st

en
cy

Performance

max

C
on

si
st

en
cy

Performance

max

(historically)

C
on

si
st

en
cy

Performance

max

(historically)

(ideally)

Consistency Really Matters

Consistency Really Matters

-- Google’s F1 team (Shute et al, VLBD, 2013)

Consistency Really Matters

“The system […] must always present […]
consistent data.”	

“[…] to cope with concurrency anomalies […] is
very error-prone, time-consuming, and ultimately
not worth the performance gains.”	

!

-- Google’s F1 team (Shute et al, VLBD, 2013)

Thesis Statement

“Using an STM-based middleware, it is possible to have
both strong consistency and better performance,
for the typical workloads of enterprise applications.”

DBMSApp
Server

DBMSClientClient App
Server

DBMSApp
Server

DBMS

!

Transactions	

Persistence

User Interface

ClientClient App
Server

Business logic	

!

DBMSApp
Server

DBMS

!

Transactions	

Persistence

User Interface

ClientClient App
Server

Business logic	

!

DBMSApp
Server

DBMS

!

!

Persistence
User Interface

ClientClient App
Server

Business logic	

Transactions	

Desired Properties

Desired Properties

• Strong consistency

Desired Properties

• Strong consistency

• Performance

Desired Properties

• Strong consistency

• Performance

• DB-independent consistency

Desired Properties

• Strong consistency

• Performance

• DB-independent consistency

• Transparent persistence

Desired Properties

• Strong consistency

• Performance

• DB-independent consistency

• Transparent persistence

• Support clustering

Key Elements

Key Elements

• STM-based transactions

Key Elements

• STM-based transactions

• DB abstraction

Key Elements

• STM-based transactions

• DB abstraction

• Add persistence to STM

Key Elements

• STM-based transactions

• DB abstraction

• Add persistence to STM

• STM-aware cache

Key Elements

• STM-based transactions

• DB abstraction

• Add persistence to STM

• STM-aware cache

• Distributed synchronization protocol

TMM:	

Transactional Memory Middleware

1. STM integration	

!

!

2. Data persistence	

!

!

!

3. Clustering	

!

TMM:	

Transactional Memory Middleware

1. STM integration	

• Repository interface	

• JVSTM	

2. Data persistence	

!

!

!

3. Clustering	

!

TMM:	

Transactional Memory Middleware

1. STM integration	

• Repository interface	

• JVSTM	

2. Data persistence	

• Data mapping	

• Commit extension	

• Cache/Identity Map	

3. Clustering	

!

TMM:	

Transactional Memory Middleware

1. STM integration	

• Repository interface	

• JVSTM	

2. Data persistence	

• Data mapping	

• Commit extension	

• Cache/Identity Map	

3. Clustering	

• Distributed group communication	

• Commit extension

TMM:	

Transactional Memory Middleware

1. STM integration	

• Repository interface	

• JVSTM	

2. Data persistence	

• Data mapping	

• Commit extension	

• Cache/Identity Map	

3. Clustering	

• Distributed group communication	

• Commit extension

TMM:	

Transactional Memory Middleware

Minimal Repository Requirements

«interface»	

Repository	

!
 get(Object key): Object	

 put(Object key, Object value): void	

 beginTransaction(): void	

 commitTransaction(): void	

 rollbackTransaction(): void

Clustering

App
Server

App
Server

… App
Server

DBMSDBMS

Clustering

App
Server

App
Server

… App
Server

DBMSDBMS

Commit

Clustering

App
Server

App
Server

… App
Server

DBMSDBMS

🔒

!
PublishApply WSValidate RS

Commit

Clustering

App
Server

App
Server

… App
Server

DBMSDBMS

🔒

!
PublishApply WSValidate RS

!
!
!
!
!
!
!
!
!
!
!
!

🔒

!

Commit

!
!
!
!
!
!
!
!
!
!
!
!

🔒

!

Clustering

App
Server

App
Server

… App
Server

DBMSDBMS

🔒

!
PublishApply WSValidate RS

Commit

!
!
!
!
!
!
!
!
!
!
!
!

🔒

!

Clustering

App
Server

App
Server

… App
Server

DBMSDBMS

🔒

!
PublishApply WSValidate RS

Commit

!
!
!
!
!
!
!
!
!
!
!
!

🔒

!

Clustering

App
Server

App
Server

… App
Server

DBMSDBMS

🔒

!
PublishApply WSValidate RS

Commit

!
!
!
!
!
!
!
!
!
!
!
!

🔒

!

Clustering

App
Server

App
Server

… App
Server

DBMSDBMS

🔒

!
PublishApply WSValidate RS

Commit

Commit!

Clustering

App
Server

App
Server

… App
Server

DBMSDBMS

Clustering

App
Server

App
Server

… App
Server

DBMSDBMS

…
#25
#24
#23
#22

…
#25
#24
#23
#22

…
#25
#24
#23
#22

Consistency Guarantees

Consistency Guarantees

Serializable

Consistency Guarantees

Serializable

Strictly Serializable

Consistency Guarantees

Serializable

Strictly Serializable

Consistent Reads

Consistency Guarantees

Serializable

Strictly Serializable

Consistent Reads
Opacity

Consistency Guarantees

Serializable

Strictly Serializable

Consistent Reads

JVSTM

Opacity

Consistency Guarantees

Serializable

Strictly Serializable

Consistent Reads

JVSTM
TMM single node

TMM cluster R/W

Opacity

Consistency Guarantees

Serializable

Strictly Serializable

Consistent Reads

JVSTM
TMM single node

TMM cluster RO

Opacity

TMM cluster R/W

Evaluation

Evaluation

• RadarGun

Evaluation

• RadarGun

• Infinispan, Hazelcast, EHCache

Evaluation

• RadarGun

• Infinispan, Hazelcast, EHCache

• Workloads: 1% to 20% write transactions

Evaluation

• RadarGun

• Infinispan, Hazelcast, EHCache

• Workloads: 1% to 20% write transactions

• Single node

Evaluation

• RadarGun

• Infinispan, Hazelcast, EHCache

• Workloads: 1% to 20% write transactions

• Single node

• Cluster: 2 to 12 nodes

Results

Results

• Outstanding single-node performance	

	
 	
 	
 From 2x to 100x faster

Results

• Outstanding single-node performance	

	
 	
 	
 From 2x to 100x faster

• Poor scalability in cluster

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 8 16 24 32 40 48

Th
ro

ug
hp

ut
 (1

00
0

tx
s/

se
c)

Threads

HZ
EHC
ISPN

Results (Single node)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 8 16 24 32 40 48

Th
ro

ug
hp

ut
 (

10
00

 t
xs

/s
ec

)

Threads

HZ
TMM+HZ

EHC
TMM+EHC

ISPN
TMM+ISPN

Results (Single node)
TMM vs. TDGs

Results (Single node)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 8 16 24 32 40 48

Th
ro

ug
hp

ut
 (

10
00

 t
xs

/s
ec

)

Threads

HZ
TMM+HZ

EHC
TMM+EHC

ISPN
TMM+ISPN

3x
65x

TMM vs. TDGs

Results (Clustered)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 4 6 8 10 12

Th
ro

ug
hp

ut
 (1

00
0

tx
s/

se
c)

Nodes

HZ
TMM+HZ

EHC
TMM+EHC

ISPN
TMM+ISPN

Scalability Bottleneck
Coarse Locks Do Not Scale	

Lock-free Commit Design

Lock-free Commit Design

• Preserve original stages

PublishApply WSValidate RS

Lock-free Commit Design

Validate RS Publish

• Concurrent validation

Apply WS

#8!

!
COMMITTED

#9!

!
COMMITTED

#10!

!
COMMITTED

Lock-free Commit Design

Validate RS Publish

• Concurrent validation

Apply WS

#8!

!
COMMITTED

#9!

!
COMMITTED

#10!

!
COMMITTED

#11!

!
VALID

Lock-free Commit Design

Validate RS Publish

• Concurrent validation

Apply WS

#8!

!
COMMITTED

#9!

!
COMMITTED

#10!

!
COMMITTED

#11!

!
VALID

#12!

!
VALID

Lock-free Commit Design

Validate RS Publish

• Concurrent validation

Apply WS

#8!

!
COMMITTED

#9!

!
COMMITTED

#10!

!
COMMITTED

#11!

!
VALID

#12!

!
VALID

#13!

!
VALID

Lock-free Commit Design

Validate RS PublishApply WS

#8!

!
COMMITTED

#9!

!
COMMITTED

#10!

!
COMMITTED

#11!

!
VALID

#12!

!
VALID

#13!

!
VALID

commitTxRecord (of tx 13)

Lock-free Commit Design

Validate RS Publish

• Thread helping

Help to write-back

commitTxRecord (of tx 13)

Apply WS

#8!

!
COMMITTED

#9!

!
COMMITTED

#10!

!
COMMITTED

#11!

!
VALID

#12!

!
VALID

#13!

!
VALID

Lock-free Commit Design

Validate RS Publish

• Thread helping

Help to write-back

commitTxRecord (of tx 13)

Apply WS

#8!

!
COMMITTED

#9!

!
COMMITTED

#10!

!
COMMITTED

#11!

!
COMMITTED

#12!

!
VALID

#13!

!
VALID

Lock-free Commit Design

Validate RS Publish

• Thread helping

Help to write-back

commitTxRecord (of tx 13)

Apply WS

#8!

!
COMMITTED

#9!

!
COMMITTED

#10!

!
COMMITTED

#11!

!
COMMITTED

#12!

!
COMMITTED

#13!

!
VALID

Lock-free Commit Design

Validate RS Publish

• Thread helping

commitTxRecord (of tx 13)

Apply WS

#8!

!
COMMITTED

#9!

!
COMMITTED

#10!

!
COMMITTED

#11!

!
COMMITTED

#12!

!
COMMITTED

#13!

!
VALID

Lock-free Commit Design

Validate RS Publish

• Linearization point

commitTxRecord (of tx 13)

Apply WS

#8!

!
COMMITTED

#9!

!
COMMITTED

#10!

!
COMMITTED

#11!

!
COMMITTED

#12!

!
COMMITTED

#13!

!
COMMITTED

Results

• Full lock-free STM	

• Reads unaffected	

• More complex algorithm	

• Scalable design	

• Comparable with top-performing STMs

Results

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

1 2 4 8 16 32

Ti
m

e
to

 c
om

pl
et

e
(m

illi
se

co
nd

s)

Threads
JVSTM lock-based (0ms)

JVSTM lock-based (0.5ms)
JVSTM lock-based (1ms)

(lower is better)

Results

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

1 2 4 8 16 32

Ti
m

e
to

 c
om

pl
et

e
(m

illi
se

co
nd

s)

Threads
JVSTM lock-based (0ms)

JVSTM lock-based (0.5ms)
JVSTM lock-based (1ms)

(lower is better)

Results

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

1 2 4 8 16 32

Ti
m

e
to

 c
om

pl
et

e
(m

illi
se

co
nd

s)

Threads
JVSTM lock-based (0ms)

JVSTM lock-based (0.5ms)
JVSTM lock-based (1ms)

JVSTM lock-free (0ms)
JVSTM lock-free (0.5ms)

JVSTM lock-free (1ms)

(lower is better)

Nonblocking TMM
= TMM + LF JVSTM

NbTMM: Goals

NbTMM: Goals

• Improve clustered performance

NbTMM: Goals

• Improve clustered performance

• Preserve TMM’s properties

NbTMM: Goals

• Improve clustered performance

• Preserve TMM’s properties

• Nonblocking algorithms only

NbTMM: Goals

• Improve clustered performance

• Preserve TMM’s properties

• Nonblocking algorithms only

• Minimize communication costs

NbTMM: Design highlights

NbTMM: Design highlights

• Read set not shared

NbTMM: Design highlights

• Read set not shared

• Only persist write set once

NbTMM: Design highlights

• Read set not shared

• Only persist write set once

• Unique write set keys

NbTMM: Design highlights

• Read set not shared

• Only persist write set once

• Unique write set keys

• Immutable data mappings

NbTMM: Design highlights

• Read set not shared

• Only persist write set once

• Unique write set keys

• Immutable data mappings

• Broadcast commit intentions

NbTMM: Design highlights

• Read set not shared

• Only persist write set once

• Unique write set keys

• Immutable data mappings

• Broadcast commit intentions

• Deterministic, independent commit decision

Results (Clustered)
TMM vs. NbTMM

Results (Clustered)
TMM vs. NbTMM

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10 12

Th
ro

ug
hp

ut
 (1

00
0

tx
s/

se
c)

Nodes

TMM+HZ
 NbTMM+HZ

TMM+EHC
 NbTMM+EHC

TMM+ISPN
 NbTMM+ISPN

NbTMM

TMM

Results (Clustered)
NbTMM vs. TDGs

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10 12

Th
ro

ug
hp

ut
 (

10
00

 t
xs

/s
ec

)

Nodes

HZ
 NbTMM+HZ

EHC
 NbTMM+EHC

ISPN
 NbTMM+ISPN

NbTMM

Results (Clustered)
NbTMM vs. TDGs

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10 12

Th
ro

ug
hp

ut
 (

10
00

 t
xs

/s
ec

)

Nodes

HZ
 NbTMM+HZ

EHC
 NbTMM+EHC

ISPN
 NbTMM+ISPN

NbTMM

Why does it not scale here?

 0

 5

 10

 15

 20

 25

2 4 6 8 10 12

Ti
m

e
(m

s)

Nodes

All but TDR
TDR

Results (Clustered)
Avg. Commit Time

ISPN time	

Other time	
!

 0

 5

 10

 15

 20

 25

2 4 6 8 10 12

Ti
m

e
(m

s)

Nodes

All but TDR
TDR

 0

 5

 10

 15

 20

 25

2 4 6 8 10 12

Ti
m

e
(m

s)

Nodes

All but TDR
TDR

 0

 5

 10

 15

 20

 25

2 4 6 8 10 12

Ti
m

e
(m

s)

Nodes

All but TDR
TDR

Results (Clustered)
Avg. Commit Time

All but ISPN	

ISPN

ISPN time	

Other time	
!

 0

 5

 10

 15

 20

 25

2 4 6 8 10 12

Ti
m

e
(m

s)

Nodes

All but TDR
TDR

 0

 5

 10

 15

 20

 25

2 4 6 8 10 12

Ti
m

e
(m

s)

Nodes

All but TDR
TDR

Results (Clustered)
Simulated ISPN

(ISPN Best)

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 6 8 10 12

Th
ro

ug
hp

ut
 (1

00
0

tx
s/

se
c)

Nodes

MOCK-0

Results (Clustered)
Simulated ISPN

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 6 8 10 12

Th
ro

ug
hp

ut
 (1

00
0

tx
s/

se
c)

Nodes

MOCK-0
NbTMM+MOCK-0

(ISPN Best)

Results (Clustered)
Simulated ISPN

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 6 8 10 12

Th
ro

ug
hp

ut
 (1

00
0

tx
s/

se
c)

Nodes

MOCK-0
NbTMM+MOCK-0
NbTMM+MOCK-1
NbTMM+MOCK-5

 NbTMM+MOCK-20

(ISPN Best)

Main Contributions

Design and implementation of:

Main Contributions

Design and implementation of:

• Transactional middleware for enterprise
applications based on STM

Main Contributions

Design and implementation of:

• Transactional middleware for enterprise
applications based on STM

• Efficient lock-free multi-version STM

Main Contributions

Design and implementation of:

• Transactional middleware for enterprise
applications based on STM

• Efficient lock-free multi-version STM

• NbTMM alternative to TMM using nonblocking
algorithms

Publications

• Sérgio Fernandes and João Cachopo. A scalable and efficient commit algorithm for the
JVSTM. 5th ACM SIGPLAN Workshop on Transactional Computing, April 2010.	

• Sérgio Fernandes and João Cachopo. Lock-free and scalable multi-version Software
Transactional Memory. 16th ACM SIGPLAN Annual Symposium on Principles and Practice
of Parallel Programming, 179-188, February 2011.	

• Sérgio Fernandes and João Cachopo. Strict Serializability is Harmless: A New Architecture for
Enterprise Applications. SPLASH Wavefront 2011, Portland, Oregon, USA, October 2011.	

• Jorge Martins, João Pereira, Sérgio Fernandes and João Cachopo. Towards a simple
programming model in Cloud Computing platforms. IEEE First Symposium on Network Cloud
Computing and Applications , Toulouse, France, 83-90, November 2011.	

• Nuno Diegues, Sérgio Fernandes and João Cachopo. Parallel nesting in a lock-free multi-
version Software Transactional Memory. 7th ACM SIGPLAN Workshop on Transactional
Computing, February 2012.

Strongly Consistent Transactions	

for Enterprise Applications

Sérgio Miguel Martinho Fernandes

Thank You!

Using Software Transactional Memory to Improve Consistency	

and Performance of Read-Dominated Workloads

