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Consistency Matters

• Concurrent programming is difficult	


!

• Strong consistency makes it easier
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“To be sure of correctness you should always 	

 use the serializable isolation level.” 	

!

“[…] choosing serializable really messes up the	

 liveness of a system, […] you often have to reduce	

 serializability […] to increase throughput.”	

!

“You have to decide what risks you want take and	

 make your own trade-off of errors versus	

 performance.”	

!

-- Martin Fowler (PoEAA, 2002)
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Consistency Really Matters

“The system […] must always present […] 
consistent data.”	


“[…] to cope with concurrency anomalies […] is 
very error-prone, time-consuming, and ultimately 
not worth the performance gains.”	


!

-- Google’s F1 team (Shute et al, VLBD, 2013)



Thesis Statement

“Using an STM-based middleware, it is possible to have 
both strong consistency and better performance, 
for the typical workloads of enterprise applications.”
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Desired Properties

• Strong consistency

• Performance

• DB-independent consistency

• Transparent persistence

• Support clustering
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Key Elements

• STM-based transactions

• DB abstraction

• Add persistence to STM

• STM-aware cache

• Distributed synchronization protocol



TMM:	

Transactional Memory Middleware



1. STM integration	
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2. Data persistence	
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3. Clustering	
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1. STM integration	


• Repository interface	


• JVSTM	


2. Data persistence	


• Data mapping	


• Commit extension	


• Cache/Identity Map	


3. Clustering	


• Distributed group communication	


• Commit extension

TMM:	

Transactional Memory Middleware



Minimal Repository Requirements

«interface»	

Repository	


!
 get(Object key): Object	

 put(Object key, Object value): void	

 beginTransaction(): void	

 commitTransaction(): void	

 rollbackTransaction(): void
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Evaluation

• RadarGun

• Infinispan, Hazelcast, EHCache

• Workloads: 1% to 20% write transactions

• Single node

• Cluster: 2 to 12 nodes
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Results

• Outstanding single-node performance	


	
 	
 	
 From 2x to 100x faster

• Poor scalability in cluster
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Results (Clustered)
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Scalability Bottleneck
Coarse Locks Do Not Scale	
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Lock-free Commit Design

Validate RS Publish

• Linearization point
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Results

• Full lock-free STM	


• Reads unaffected	


• More complex algorithm	


• Scalable design	


• Comparable with top-performing STMs
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Nonblocking TMM
= TMM + LF JVSTM
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NbTMM: Goals

• Improve clustered performance

• Preserve TMM’s properties

• Nonblocking algorithms only

• Minimize communication costs
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NbTMM: Design highlights

• Read set not shared

• Only persist write set once

• Unique write set keys

• Immutable data mappings

• Broadcast commit intentions

• Deterministic, independent commit decision
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Results (Clustered)
NbTMM vs. TDGs
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Main Contributions

Design and implementation of:

• Transactional middleware for enterprise 
applications based on STM

• Efficient lock-free multi-version STM

• NbTMM alternative to TMM using nonblocking 
algorithms
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