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Abstract
Despite many evolutions in the software architecture of en-
terprise applications, one thing has remained the same over
the years: They still use a relational database both for data
persistence and transactional support. We argue that such de-
sign, once justified by hardware limitations, endured mostly
for legacy reasons and is no longer adequate for a significant
portion of modern applications running in a new generation
of multicore machines with very large memories.

We propose a new architecture for enterprise applications
that uses a Software Transactional Memory for transactional
support at the application server tier, thereby shifting the re-
sponsibility of transaction control from the database to the
application server. The database tier remains in our architec-
ture with the sole purpose of ensuring the durability of data.

With this change we are able to provide strictly serializ-
able transaction semantics, and we do so with increased per-
formance. Thus, we claim that strict serializability is harm-
less, in the sense that programmers no longer have to trade
correctness for performance for a significant class of appli-
cations. We have been using this new architecture since 2005
in the development of real-world complex object-oriented
applications, and we present statistical data collected over
several years about the workload patterns of these applica-
tions, revealing a surprisingly low rate of write transactions.
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gineering]: Software Architectures

General Terms Design, Performance

Keywords Enterprise Application Architecture, Software
Transactional Memory, Strict Serializability, Persistence,
Transactions, Object-Oriented Programming, Rich-Domain
Applications, Fénix Framework

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0942-4/11/10. . . $10.00

1. Introduction
The adoption of multicore architectures as the only way
to increase the computational power of new generations
of hardware spurred intense research on Software Trans-
actional Memory (STM), leading to many advances in this
area over the last eight years (for an actual and comprehen-
sive description of the research made on STMs, see [19]).

STMs bring into the realm of programming languages,
the age-old notion of transactions, well known in the area of
Database Management Systems (DBMSs). STMs, however,
are not concerned with the durability property of ACID, and,
because of this, most, if not all, of the STMs’ design deci-
sions and implementations have little in common with their
counterparts of the database world [14]: Unlike DBMSs,
modern STMs are designed to scale well to machines with
many cores, to provide strong correctness guarantees such as
opacity [18], and to ensure nonblocking progress conditions
such as lock freedom [15].

And yet, surprisingly, all of these great advances in the
area of STMs have been mostly ignored by one of the com-
munities that could benefit the most from them: The com-
munity of enterprise application development. In this paper,
we show that there is much to gain by merging these two
areas, namely, both in terms of development effort and of
performance.

We propose a new architecture for enterprise applications
that uses an STM, rather than a DBMS, to ensure the transac-
tional semantics for its business operations. Because STMs
do not guarantee the durability of the data, we show how
to extend the STM to collaborate with a persistent storage
system to ensure that the application’s data are safely stored.

We claim, and provide evidence, that this new architec-
ture is not only much better to develop many of today’s com-
plex, rich enterprise applications, but is also better suited
to use the new generation of machines with many cores
and very large memories that are increasingly running the
application-server tiers of those applications.

Both this architecture and its implementation were de-
veloped over the last six years alongside the development



of a real-world complex application—the FénixEDU1 web
application—and have been driving the execution of that
application in a demanding production environment since
2005. In 2008, the FénixEDU web application went through
a major refactoring to separate the infrastructure code from
the rest of the application code, resulting in the initial ver-
sion of the Fénix Framework—a Java framework to develop
applications that need a transactional and persistent domain
model, and that implements our proposed STM-based archi-
tecture.2

1.1 Main contributions
The main contributions of this paper are threefold.

First, we propose an architecture that is especially suited
for the development of many of today’s object-oriented en-
terprise applications, providing not only strictly serializable
semantics to the applications’ business transactions, but also
improved performance over traditional implementations. Se-
rializability alone requires that transactions be ordered as
if they had executed sequentially. Strict serializability is an
additional requirement on top of serializability: It imposes
that transactions be serialized without reversing the order
of temporally nonoverlapping transactions [24]. Intuitively,
programmers can think of strictly serializable transactions
as transactions that are serialized in an instant within the
real-time interval in which they executed. Regarding per-
formance, our tests show an increase of throughput in the
TPC-W benchmark, for a variety of workloads and cluster
configurations, up to 23.7 times, having the best results in
the read-intensive workloads.

Second, we describe the key elements of an implemen-
tation of this architecture in a Java-based framework—the
Fénix Framework: We describe how to extend the commit
algorithm of the STM that we use to ensure the durability of
the application’s data; we describe the life cycle of a persis-
tent domain object; and we describe how we use a shared,
global identity map to keep domain objects in memory and
preserve their identity across transactions and threads. We
describe, also, the mechanisms used to allow the simultane-
ous existence of more than one application server accessing
the same data, while still ensuring strict-serializable consis-
tency guarantees for all the transactions running across all of
the application servers.

Third, and finally, we present statistical data about the
workload patterns of two real-world enterprise applications.
These results were collected over an extended period of
several years, with varying usage patterns, and we claim that
they are an important contribution for at least two reasons.
First, they provide support to the common belief (but rarely
confirmed with real data) that enterprise applications have a
very high read/write ratio: In both cases, the number of write
transactions are, on average, only 2% of the total number of

1 http://fenix-ashes.ist.utl.pt/
2 http://fenix-ashes.ist.utl.pt/trac/fenix-framework

transactions, peaking below 10% for short periods of write-
intensive activity. These numbers are, actually, well below
the numbers that are typically observed in benchmarks such
as TPC-W. Second, these results confirm our claim that
strict serializability is harmless for (at least some) enterprise
applications: The rate of conflicts among write transactions
is almost negligible for these applications, averaging less
than 0.2% of the total number of write transactions (meaning
that they represent less than 0.004% of the total number of
transactions).

The remainder of this paper is organized as follows. In
Section 2 we argue why a new architecture for enterprise ap-
plications is needed: We believe that historical reasons have
led to some limitations in the programming model, namely
with regard to transactional semantics. We discuss those lim-
itations and how they affect programmers and software de-
velopment. Then, in Section 3 we describe the STM-based
architecture that we propose and discuss some of its imple-
mentation details. Next, in Section 4, we describe a real-
world case of a large application, as well as a smaller-sized
application, both developed with this architecture. Addition-
ally, we provide a performance comparison between two im-
plementations of the TPC-W benchmark, one using a tradi-
tional approach and another using our architecture. We dis-
cuss related work in Section 5 and conclude in Section 6.

2. Why We Need a New Architecture
Over the last 30 years, the development of enterprise appli-
cations has evolved, influenced by diverse factors such as
the changes in hardware, or the changes in the users’ expec-
tations about how applications should behave. Often, these
changes had a reflection in the architecture of applications.
Still, one thing has remained the same for most applica-
tions: The underlying DBMS provides not only persistence
but also the transactional semantics on which application de-
velopers rely for programming business transactions.

Unfortunately, this means that developers are limited
to the isolation levels provided by the underlying DBMS,
which often does not provide serializability—a correctness
property for concurrent transactions that is crucial to ensure
the integrity of the applications’ data.

Historically, DBMSs weakened the isolation level of
transactions as a trade-off between correctness and perfor-
mance, which resulted in the generally accepted idea that
serializability is incompatible with performance. This line
of reasoning is clearly illustrated by the following passage
from Martin Fowler’s well-known book on patterns of enter-
prise application architecture [16]:

To be sure of correctness you should always use the
serializable isolation level. The problem is that choos-
ing serializable really messes up the liveness of a sys-
tem, so much so that you often have to reduce serial-
izability in order to increase throughput. You have to



decide what risks you want take and make your own
trade-off of errors versus performance.
You don’t have to use the same isolation level for all
transactions, so you should look at each transaction
and decide how to balance liveness versus correctness
for it.

Even though this book is from 2002, we believe that it still
represents faithfully the actual state of the practice in the de-
velopment of most enterprise applications. One of the prob-
lems, thus, is that the use of weaker transactional semantics
burdens developers with additional, nontrivial development
effort. We shall return to this problem in greater detail later
in this section. Before that, however, we provide a brief his-
torical overview of the development of client/server appli-
cations and relate it to the status quo of complex enterprise
object-oriented application development.

2.1 The Shift From a 2-tier to a 3-tier Architecture
A core component of most modern enterprise applications is
a DBMS, and its use in such applications goes a long way
back. The first enterprise applications were 2-tiered—that
is, they had a simple client/server architecture. The clients
made their requests directly to the database server, which in
turn executed the requested operations and gave back the re-
sults. This architecture was adequate in a scenario where all
the clients were on a trusted network and most of the com-
putational power resided on a big server. In this architecture,
transactional control was placed in the (only) obvious lo-
cation: The database server. Each client request would per-
form within a database transaction, and the server ensured
the ACID properties. Database servers were expensive and
they had to cope with a growing usage demand. Eventually,
different semantics for the ACID properties appeared, which
relaxed some of the properties (e.g., isolation), mostly for
performance reasons. As client machines became more and
more powerful, more computation could be performed on
the client side, which would also take part in ensuring data
consistency. Business logic consistency started to get more
complex than simple low-level consistency checking (e.g.,
referential integrity), including complex high-level consis-
tency (e.g., a list can only contain odd numbers). Often,
in this architecture the business logic code was intertwined
with the user interface code.

With the growth of the internet and the World Wide Web,
a new architecture emerged. As organizations felt the need
to interconnect their systems, the 2-tiered architecture no
longer served their purposes. There were several reasons for
this, including the systems’ security and network bandwidth.
The clients (now including systems in diverse geographical
locations and outside the control of the intranet) were no
longer trusted. The number of clients grew. The available
bandwidth was far less than it was previously available on
the intranet, such that sending large volumes of data, as the
result of a database query, was no longer viable. This led to

a 3-tiered architecture on which the server side was decom-
posed in two tiers: One for the application server and an-
other for the database server. The database server was still
responsible for the data persistence and ensuring transac-
tional access. The application server was responsible for ex-
ecuting the complex business logic and interfacing with the
clients, which would provide the user interface. This new ar-
chitecture presented two main advantages over the previous:
(1) the information was kept safe within the intranet and it
was only accessed directly by a trusted system; and (2) large
queries could be obtained and processed on the server-side
before sending the results over the internet to the clients. No-
tably, relaxed transactional semantics was kept in place, be-
cause database performance was still an important aspect in
this architecture.

As the internet grew, another revolution was taking place
in the software development area: Object-oriented program-
ming languages became mainstream and started to be used
commonly in the development of large server-side appli-
cations. Characteristics such as component modularization,
ease of reuse, data encapsulation, and abstraction, helped
developers control the growing complexity of their appli-
cations. The adoption of Object-Oriented Programming
(OOP), however, created a mismatch between the persistent
representation of data and their in-memory representation,
known as the object-relational impedance mismatch [21].
The development of Object-Relational Mapping (ORM)
tools was the industry’s answer to handle this mismatch. The
purpose of an ORM tool is to take care of the data mapping
between the object-oriented model and the relational model.
Whereas, in part, these tools simplified the programmers’
coding efforts, they also created some difficulties of their
own, such as the maintenance of O/R-mapping metadata,
and the varied semantics implied by object caching, lazy
loading, and support for ad hoc queries. Additionally, dif-
ferent ORMs provided different semantics. Yet, the features
provided by ORM tools kept depending on transactional
support that was still under the responsibility of the under-
lying DBMS, which, in turn, still offered different flavors
for ACID semantics, but none included support for strict se-
rializability [24]. In fact, the isolation guarantees provided
by databases have, for long, been a matter of confusion and
discussion [2].

The natural evolution in software and hardware has led
us to the current state, in which many developers depend
on a 3-tiered architecture, develop application servers us-
ing an object-oriented paradigm, and rely on a relational
DBMS for persistence. There are of course some exceptions
to this, most notably in emerging large distributed systems,
which may use different programming models [11] or differ-
ent storage mechanisms [4] with different consistency mod-
els [26, 29]. These very large-scale distributed systems fit in
a class of their own and, for the time being, are not the target
of our study.



We concentrate on the development of complex object-
oriented applications that require transactional support and
data persistence. By complex, we mean applications that
have a rich domain structure with many relationships among
the classes, as well as business logic with nontrivial rules
(but not typically a massive volume of data to process).
Moreover, we assume that these applications have many
more read-only than write business transactions, typically in
the rate of 10 to 1 or more.

For these applications, we identify two problems with
current implementations of the typical 3-tier architecture:
One is the difficulty in ensuring consistency; the other is
the reduced performance of the application server in the
processing of complex operations. We address each problem
in the following two subsections.

2.2 Consistency Problems
If given the possibility, it seems clear that every programmer
would prefer to have no less than strict-serializability seman-
tics when programming concurrent transactional operations
that manipulate the state of the domain objects in their code.
Having such guarantee shields programmers from concur-
rency hazards, and allows them to write cleaner and simpler
code.

To illustrate this point consider the following example:
Imagine a multi-player game where players can concurrently
move their pieces in a map from one point to another with the
restriction that after each movement is performed no player
can be in the immediate vicinity of another player. Now
consider the starting scenario depicted in Figure 1, which
shows part of the map containing two players, P1 and P2.
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Figure 1. Two players occupying nonadjacent positions on
a map.

Suppose that, concurrently, P1 will attempt to move one
position to the right and P2 will attempt to move one position
to the left. Only one move can succeed, because otherwise
the two players would be left next to each other. A typical
implementation of the moveTo operation could be similar
to the pseudocode presented in Figure 2. The programmer
checks that both the target position and its surroundings are
available and, if that is the case, updates the position of the
player on the map.

This code looks quite trivial and, when several moves are
executed concurrently, each within its own transaction, the

class Player {
void moveTo(int x, int y) {

if (cell(x,y).available(this) &&
cell(x+1,y).available(this) &&
cell(x-1,y).available(this) &&
cell(x,y+1).available(this) &&
cell(x,y-1).available(this)) {

this.currentCell().clear();
cell(x,y).set(this);

} else {
throw Exception("Move not allowed");

}
}

}

class Cell {
boolean available(Player p) {

return this.isEmpty() || this.holdsPlayer(p);
}

}

Figure 2. The moveTo operation checks the surroundings to
ensure that the move is allowed and writes to the destination.

programmer might expect the application to work just fine—
that is, after each transaction finishes, the moved player
should be in a location that does not contain any adjoin-
ing players, thus maintaining the domain consistent. Sadly,
this may not be the case if transactions are executed with
the isolation level provided by most of today’s mainstream
databases, which ensure at most snapshot isolation. Under
snapshot isolation a transaction may commit even if the val-
ues that were read changed in the meanwhile, as long as con-
current writes do not intersect. In this example, if transac-
tion T1 executes P1.move(2,2) and transaction T2 executes
P2.move(3,2), then Figure 3 presents the points in the read
set and write set of each transaction with regard to map co-
ordinates.

Tx Read set Write set
T1 (2,2), (3,2), (1,2), (2,3), (2,1) (1,2), (2,2)
T2 (3,2), (4,2), (2,2), (3,3), (3,1) (4,2), (3,2)

Figure 3. T1 and T2 write to adjacent places concurrently.
Write sets do not intersect.

Note that write sets do not intersect, and as such, snapshot
isolation will allow both transactions to commit, leading to
an inconsistent domain state. This problem is well known
by the name of write skew [12]. Yet, without changing the
database concurrency control mechanisms, the current solu-
tion is to put in the programmer’s shoulders the responsibil-
ity for forcefully creating a conflict between the two trans-
actions. In this case, that may be accomplished by calling
clear() for all of the surrounding positions, thus causing
an intersection in the write sets [8]. This is definitely some-
thing undesirable from the programmer’s perspective, and
very much error-prone in complex applications where the
potential conflicts might not be easily identified, as they may
occur due to the interaction of many functionalities.



2.3 Performance Problems
So, why do not current transactional implementations change
to support strict serializability? Probably, because of the gen-
eralized idea that providing strict serializability necessarily
imposes unacceptable performance penalties. Such may ac-
tually be true for today’s standard architectures, which ulti-
mately rely on the DBMS for transactional support.

When ORMs were not in use or applications had sim-
ple domain models, it was common for programmers to im-
plement a complex database query to return exactly the re-
sults sought. Generally, this meant that very few database
round trips (often just one) were enough to process each unit
of work requested by the client. Most of the business logic
computation was embedded on the database query and han-
dled by the DBMS. For an application with a typical 3-tier
architecture, where the communication latency between the
client and the server is measured in hundreds of millisec-
onds and the communication latency between the applica-
tion server and the database takes fewer than 10ms, the time
spent with the database query is almost negligible from the
client’s perspective.

Today, however, programmers can execute complex com-
putations that require reading into main memory many of the
application’s objects. The use of ORMs and object-oriented
programming facilitates and promotes object navigation in-
stead of the creation of custom queries. This type of pro-
gramming greatly increases the number of database round
trips required to answer to a client’s request, with negative
influence on performance. If instead of one database round
trip, the business transaction has to perform tens to hundreds
of round trips in sequence, then the accumulated latency of
all of those round trips largely exceeds the typical latency
between the client and the server.

Trying to alleviate this problem, ORMs cache data on the
application server tier, but still they depend on the underly-
ing database to provide the transactional semantics. Unfor-
tunately, developers of ORM tools have followed suit with
databases in terms of the transactional properties provided
to the application programmer. In fact, the use of application
tier caches may further weaken the consistency semantics of
the database by inadvertently providing inconsistent reads
(served from the cache) within a transaction, as discussed
in [25].

3. An STM-based Architecture for
Enterprise Applications

The core idea in our architecture is to shift the responsibil-
ity for transactional control: It no longer lies on the persis-
tence tier and it is shifted to the application server tier. We
use an STM—more specifically the JVSTM3—to provide
in-memory transactional support directly in the application
server tier.

3 http://web.ist.utl.pt/joao.cachopo/jvstm/

The design of the JVSTM evolved alongside the develop-
ment of the architecture that we describe in this paper, and it
was heavily influenced by the observation and development
of real-world, domain-intensive web applications [5]. Of-
ten, these applications have rich and complex domains, both
structurally and behaviorally, leading to very large transac-
tions, but having also a very high read/write ratio (as we shall
see later, but see also [5, 9] for more real-world numbers).

The new architecture that we present maintains the typi-
cal 3-tier layout, but uses the persistence tier only to ensure
the durability property of ACID. Atomicity, consistency, and
isolation are ensured at the application server tier. Conceptu-
ally, any type of storage (such as relational, column-oriented,
or key-value) can be used in the persistence tier, but our ini-
tial choice was to use a relational database. We had several
reasons for this decision. First, relational databases are a re-
liable technology for data storage. Second, they are still the
mainstream backend used in many enterprise applications,
as was the case of the FénixEDU web application, which
had its data stored in a relational database and there were
also other applications that queried the database (in read-
only mode) to obtain data for several other systems, mostly
for statistics. So, by using the relational model for persis-
tence, we could migrate the FénixEDU application to the
new architecture while maintaining compatibility with other
legacy applications. Third, relational databases already sup-
port some level of transactional support, which enables us
to simplify the commit algorithm in our solution. We have
developed implementations of this architecture that run on
top of other backends, namely using BerkeleyDB, HBase,
and Infinispan, but in this paper we describe only the imple-
mentation that uses a relational database for the persistence
tier.

The general idea is that we extend the JVSTM to make
it persistent. Yet, this seemingly simple task poses several
new issues. In the next subsection we provide an introduc-
tion to JVSTM and describe some of its implementation de-
tails that are relevant to the following subsections. In the re-
maining subsections we describe some of the most important
aspects of the Fénix Framework, which implements the in-
frastructure that provides enterprise applications the support
for performing transactional operations on shared persistent
objects. We begin under the assumption that there is only
one application server running. Then, in Section 3.6 we de-
tail the changes required for this implementation to work in
a clustered environment.

3.1 Brief Introduction to JVSTM
JVSTM is a Java library that implements a word-based,
multi-version STM that ensures strict serializability for all
of its committed transactions. Actually, JVSTM provides the
even stronger correctness guarantee of opacity [18], which
ensures that noncommitted transactions always see a consis-
tent state of the data.



VBox

body: version: 13

value: 2

previous:

version: 8

value: 1

previous:

version: 4

value: 0

previous: null

Figure 4. A transactional counter and its versions. From the
programmer’s perspective, the VBox has only one value at
any given time.

JVSTM uses Versioned Boxes [7] to implement transac-
tional locations in memory. A versioned box (VBox) holds
a sequence of entries (body), each containing a value and
a version. Each of the history’s entries corresponds to a
write made to the VBox by a successfully committed transac-
tion. When such a writing transaction commits, it advances
a global version clock and uses the new clock value to tag
each of the new bodies that it creates. JVSTM’s commit al-
gorithm always keeps the sequence ordered, with the most
recent committed value immediately accessible.

Figure 4 shows an example of a transactional memory
location for an integer that models a counter. In the exam-
ple shown, the counter has been set to zero by the trans-
action that committed version 4, and incremented by the
transactions that committed versions 8 and 13. From the pro-
grammer’s perspective there is a single memory location of
the type VBox<Integer> that can be accessed via get() and
put() methods.

A transaction reads values in a version that corresponds
to the most recent version that existed when the transac-
tion began. Thus, reads are always consistent and read-only
transactions never conflict with any other, being serialized in
the instant they begin as if they had atomically executed in
that instant. Read-write transactions (write transactions for
short), on the other hand, may conflict among them, and they
require validation at commit-time to ensure that all values
read during a transaction are still consistent when they try to
commit—that is, values have not been changed in the mean-
while by another concurrent transaction. One of the distinc-
tive features of the JVSTM is that read-only transactions
have very low overheads and they are lock-free [15].4

3.2 Transactional Domain Objects
An object-oriented enterprise application represents and ma-
nipulates its persistent data as a graph of Domain Objects
(DOs): Each DO represents an entity of the application’s do-
main and its connections to other DOs represent relation-
ships that it has with those DOs; we call this graph of DOs
a domain model. In an object-oriented application, DOs are
instances of some of the application’s domain classes, and
they contain a set of fields that hold the state of the ob-
ject. Moreover, relationships are represented either by ref-
erences to other objects or collections of objects, depending

4 In fact, apart from the creation of a new transaction instance, read-only
transactions run entirely wait-free [20].

on the multiplicity of the relationship. Naturally, both the
DOs’ state and their relationships may change over time, as
a result of the application’s operations, which execute con-
currently by reading and changing the domain model.

Thus, as DOs are mutable and shared, they need to be
transactional. As we saw before, JVSTM provides us al-
ready with transactional memory locations—the versioned
boxes—but we need to have transactional DOs instead. To
create transactional DOs, we wrap all of the mutable state of
the domain model with versioned boxes, which, themselves,
may contain only immutable objects. So, if, for instance, we
have a DO representing a person with a name and this name
may change, we will use a versioned box to hold the per-
son’s name and we will keep this box within the instance of
the class Person that corresponds to our DO.

To implement this approach correctly, all of the fields
of a domain class must be final and their types must be
either VBox or an immutable type (such as String, Integer,
or any of the Java’s primitive types). The contents of each
VBox, on the other hand, must always be an instance of an
immutable type. Note that all of the types corresponding to
domain classes are immutable types also, and so we may
have boxes that contain DOs.

The key result of following these rules is that DOs are
now transactionally safe: DOs may be shared among all of
the concurrent threads running JVSTM transactions within
the application, thereby ensuring a strictly serializable se-
mantics for all of the application’s business transactions.
Moreover, as we shall see in the following section, having
transactional DOs will allow us to reduce both the execution
time and the memory consumption of the application.

A potential problem with our approach, however, is that
the implementation of domain classes that strictly adhere to
the above rules is error prone, if done manually by program-
mers. This problem is avoided in our approach by providing
a domain-specific language [17] to describe the structural
aspects of a domain model—the Domain Modeling Lan-
guage (DML) [5, 6]. DML has a programmer-friendly, Java-
like syntax to describe entity types, their attributes, and rela-
tionships among them. So, a programmer using the Fénix
Framework creates the application’s domain model using
DML, and then the DML compiler automatically generates
the source code corresponding to the structural aspects of the
domain classes; the behavioral code is separately developed
in plain Java by the programmer.

Besides simplifying the task of implementing the domain
classes, this approach based on code generation has another
important benefit: It allows us to change, and eventually
fine tune, the layout of DOs. For instance, in Figure 5, we
show an example of two possible layouts for an hypothetical
domain class Person. In the first layout, all of the DO’s
attributes are kept in a single versioned box, whereas in the
second layout there is one versioned box per attribute. This
versatility enables adaptive designs that take into account



// using one versioned box per object
class Person {

final VBox<Person_State> state = new VBox<Person_State>();

private class Person_State {
String firstName;
String lastName;
Address contact;

}

String getFirstName() {
return this.state.get().firstName;

}

void setFirstName(String firstName) {
Person_State newState = this.state.get().clone();

newState.firstName = firstName;
this.state.put(newState);

}
[...]

}

// using one versioned box per attribute
class Person {

final VBox<String> firstName = new VBox<String>();
final VBox<String> lastName = new VBox<String>();
final VBox<Address> contact = new VBox<Address>();

String getFirstName() {
return this.firstName.get();

}

void setFirstName(String firstName) {
this.firstName.put(firstName);

}
[...]

}

Figure 5. Two possible memory layouts for the same per-
sistent data. Also shown are the generated get and set oper-
ations for the firstName attribute, in both cases.

application-specific characteristics regarding how domain
data are accessed. Objects that are seldom modified can have
their entire state in a single versioned box, which reduces
memory usage. Objects with high contention can benefit
from having one versioned box per attribute, which will
reduce the number of conflicts between transactions that
manipulate different attributes of the same objects.

3.3 The Domain Object Cache: Domain Objects Have
Identity

In complex object-oriented applications where business
transactions have to traverse deep graphs of objects, the re-
sulting database round trips typically incur into an unaccept-
able performance cost. Reducing the number of database
round trips, becomes, thus, essential for performance. We
address this problem in the Fénix Framework, by using a
global Domain Object Cache, shared by all threads, which
maintains DOs in memory for as long as possible. The key
idea is that read-only transactions should access the database
only when DOs are not available in memory, which should
not happen often if most of the application’s data fit in mem-
ory. The goal is that, once loaded, DOs will remain in mem-
ory until the Java garbage collector needs space that it can-

not find in any other way. Only in that case, may DOs be
removed from the cache and garbage collected (provided
that they are not in use by any transaction). In our current
implementation, we rely on Java’s SoftReferences for this
behavior.

One of the results of using this approach for applica-
tions whose entire persistent data fit in memory is that, af-
ter warming up, the application server will never access the
database for read-only transactions.5

The implementation of the Domain Object Cache follows
the Identity Map architectural pattern [16]. We use only one
instance of the Domain Object Cache per instance of the ap-
plication server. Thus, the Domain Object Cache is shared
among all threads (and, consequently, among all transac-
tions) that execute in the application server. Notice that this
domain object caching behavior is very different from that
provided by most, if not all, of the current ORM implemen-
tations. All ORMs that we know of ensure transaction iso-
lation by delivering different copies of the same object to
different transactions. In such implementations, new objects
are constantly allocated and deallocated, as more transac-
tions execute. This happens, regardless of whether the ob-
ject came from the database anew or was read from some
second-level in-memory cache. The Domain Object Cache
of our architecture ensures that, at any given time, the same
persistent object is represented by at most one (reachable)
instance in memory. As we saw before, DOs can be shared
among all transactions because they are transactionally safe.
Thus, unlike what happens with ORMs, in our approach the
memory required to hold DOs does not depend on the num-
ber of concurrently running transactions.

Each entry in the Domain Object Cache maps an object’s
unique identifier (OID) to a reference to the object itself. The
OID is assigned automatically by the framework, ensuring
its uniqueness, when a domain object is created and remains
unchanged thereafter. The reference to the object is a Java
SoftReference, which allows for cached objects that are no
longer referenced elsewhere to be garbage collected when
their memory is necessary, but will keep objects in memory
while they fit.

The lookup and cache operations are performed automat-
ically by the infrastructure’s implementation during an ob-
ject’s lifecycle. When a new object is allocated it is automat-
ically cached before being made available to the application.
This is so, regardless of whether the object is a new instance
or an already existing object being materialized from persis-
tence. Next, we detail the object allocation mechanism.

3.4 Domain Object Allocation and Loading
An application’s DO is allocated either when the program
creates a new instance, or when an existing DO that is not in
main memory is requested by its OID.

5 There is an exception to this rule when multiple application servers share
the same database. This is discussed further ahead in Section 3.6.



In the first case we simply cache the new instance before
returning it to the application, as we already mentioned.
Even if the transaction in which the DO was created aborts,
there is no problem in having cached it, because OIDs are
unique and therefore the DO may linger in cache for a while
until it is eventually garbage collected: Its cache entry will
never conflict with another.

In the second case, when an existing DO is requested by
its OID, we perform a cache lookup. If the DO is found, then
it is simply returned. Otherwise, we allocate the DO, put it
in the cache, and return it to the application.

In Java, object allocation is tightly coupled with object
instantiation. To implement our allocation mechanism we
perform bytecode rewriting in all DO classes to inject a
special constructor that is used exclusively by the framework
whenever an object needs to be materialized in memory.6

This allocation mechanism completely avoids database
access. Such is possible because the OID encodes informa-
tion about the DO’s concrete class, which enables us to allo-
cate a DO of the correct class without knowing the value of
its fields yet. Only if the application later requests the value
of any of the DO’s fields, will a load from the database be
triggered. This corresponds to the Lazy Load pattern using
ghosts [16]. Each ghost is not a proxy: It is the object itself.
The difference is that its state is not yet known, because all
of its versioned boxes are created and set to a special empty
value (a NOT LOADED flag). When any value of its attributes
is actually accessed, the transactional system identifies the
special flag and triggers a database load of the missing value.
So, using ghosts maintains the Domain Object Cache’s prop-
erty that, at any given time, the same persistent object is rep-
resented by at most one (reachable) instance in memory.

The difficulty with lazy loading the contents of a DO
lies in the fact that the in-memory representation of the at-
tributes is versioned (recall that all mutable state is kept in
versioned boxes), whereas the persistent representation in
the relational database stores only the most recent commit-
ted state for any datum.7 So, we need to ensure than when
a running transaction, for example T1, lazily reads a value
from the database, it will see a consistent value, and not
some other value that another committed transaction may
have written after T1 had started. We solve this by (1) open-
ing a database transaction in the beginning of the application
server’s memory transaction, (2) keeping it open for the du-
ration of the memory transaction, and (3) requiring that the
underlying database supports snapshot isolation [2], which
is common nowadays. With this we ensure that when the
application needs to load additional information from per-

6 The main reason to inject this constructor, instead of generating it in the
source code, is to ensure that it will not include any instance initialization
code that the programmer may have added to the class.
7 Of course that this mismatch could easily be solved by storing all the
versions in the database, but that would go against the previous design
decision to use the typical relational data structure, and would consequently
break compatibility with legacy applications that queried the database.

sistence it will always see a consistent snapshot correspond-
ing to the most recent version that existed when the trans-
action started. The most straightforward implementation of
this strategy requires a database transaction for every mem-
ory transaction. This need can be greatly reduced in two
ways: One is to share database transactions among all mem-
ory transactions that start in the same version. This is pos-
sible because the database transaction is only used to read
data. Writes are performed in a separate database transac-
tion during the commit of the memory transaction (cf. Sec-
tion 3.5). The other way is to not always start a database
transaction in the beginning of the memory transaction. If it
is likely that all the required information is already loaded
in memory, then database access is really not needed. In the
event that a memory transaction needs something from the
database and no database transaction has been open yet, it
is enough to restart the memory transaction, and this time
to open a database transaction in the beginning: Using this
strategy can pay off when most of the database fits into main
memory, and the probability of a missed datum is low. We
are currently not using any of these techniques, and we chose
to open a database transaction for every memory transaction.

Generically, this mechanism allows us to materialize in
memory any object given its OID without having to load it
from the database. A typical use case in an object-oriented
application is to load some root object and then navigate
through the object graph by reading the objects’ attributes.
This way, objects are allocated in memory as soon as they
are referenced, but their contents are only loaded from per-
sistence when they are accessed for the first time. Moreover,
if different paths in the object graph lead to the same object,
they will actually lead to the same instance, not to another
copy. This is true regardless of the thread from which the
object is accessed.

3.5 Persisting Domain Objects
The JVSTM deals with all the in-memory transactional
support: It provides atomicity and isolation with strict-
serializability semantics, but it does not provide any form of
data persistence. It follows a redo log model for STMs [19],
which means that it keeps the write set in a transaction-local
context, and it applies changes to the corresponding shared
transactional locations only during the commit operation if
the transaction is valid to commit. A transaction T is valid to
commit if its read set does not intersect with the write set of
any other transaction that committed meanwhile (between
the instant T starts and the instant T commits).

Therefore we need to ensure that the commit of a valid
transaction is both persisted and made visible in shared
memory, atomically. The transactional API provided to
the programmer overrides the commit operation from the
JVSTM to add the required behavior.

Figure 6 presents the commit algorithm for write transac-
tions (the commit of read-only transactions simply returns).
Committing a transaction is composed of three stages: Read



1 class Transaction {
2 void commit() {
3 GLOBAL_LOCK.lock();
4 try {
5 if (validate()) { // throws exception if validation fails
6 int newVersion = globalClock + 1;
7 persistChanges();
8 writeBackToMemory(newVersion);
9 globalClock = newVersion;

10 }
11 } finally {
12 GLOBAL_LOCK.unlock();
13 }
14 }
15

16 void persistChanges() {
17 // The database transaction provides write atomicity
18 beginNewDBTx();
19 writeBackToDB();
20 commitDBTx();
21 }
22 }

Figure 6. We extend the commit operation of the JVSTM to
write the changes to persistence, after validating the transac-
tion in memory.

set validation, writing back changes to shared locations,
and publishing changes globally. The global lock provides
mutual exclusion among all committing write transactions,
which trivially ensures atomicity between validating the read
set (line 5) and writing back the write set (line 8). Also, the
version number is provided by a unique global version clock
that only changes inside the critical region. In the commit
algorithm of the JVSTM the linearization point occurs when
the global clock is updated (line 9). In this new version of
the commit algorithm, however, the effects of the commit
are visible as soon as the persistChanges finishes. After that
point, the changes made by the transaction are seen by other
transactions that start henceforth, because they open a con-
nection to the database and read the most recent state.

The shaded code in line 7 extends the JVSTM’s commit
with an additional step that sends changes to the persistence
tier. The order of invocation of the persistChanges oper-
ation is critical to ensure the required transactional behav-
ior: It is performed after the transaction has been validated
by the STM, and before actually making the changes visi-
ble in memory. The former ensures that the state to persist
is consistent, and the latter ensures that a possible failure in
the persistChanges operation occurs before modifying any
shared memory. Because writing to persistence is performed
within the global commit lock, a database transaction never
conflicts. If the database write fails for some catastrophic
reason (such as loosing connection to the database), then the
transaction is aborted in memory. We do not depend on the
database transactional semantics for any transaction to suc-
ceed. However, it is necessary that the persistChanges op-
eration performs an atomic write to the database, to account
for any catastrophic crash of the application server during
the write to persistence. If this happens, then when the ap-
plication server restarts it will see a consistent state, either

before or after the current commit operation. Again, after
persisting changes, the remainder of the commit algorithm
can only fail for catastrophic reasons (such as running out
of memory), in which case the application server’s restart
will certainly see the current transaction as committed in the
persistence.

When committing a memory transaction, a database
transaction is already undergoing, because, as we mentioned
in Section 3.4, such is used to ensure consistent reads from
the database. For that reason, the beginNewDBTx operation
will relinquish any database transaction that may be in use
and will create a new transaction to write the changes. There-
fore the only database transactions that update the contents
of the database are always created inside the global commit
lock.

3.6 Clustered Environment
Up until this point we have presented the architecture under
the assumption that there is only one instance of the applica-
tion server running. Multicore computers with large amounts
of available memory are becoming mainstream and they are
the natural target hardware for applications developed with
the architecture that we propose: (1) The typical workloads
are highly parallel, which benefit from the increasing num-
ber of cores, and (2) having lots of memory enables the pro-
gram to keep most, if not all, of its data in memory, thus
reducing the number of database roundtrips. However, even
when a single computer built with this commodity hardware
is enough to run the entire application server with good per-
formance, there are other reasons for deploying in a clustered
application server environment, for example to enable fault-
tolerance, or even to enable live hardware upgrades. In this
subsection we present the additional changes to the current
infrastructure to support more than one application server.

To support multiple application servers we need a mech-
anism that enables the servers to synchronize their changes,
namely updates to the global clock and to the application’s
shared state. We decided to use the persistence tier to com-
municate the state synchronization information between the
application servers. This was a relatively straightforward de-
cision given that the communication mechanisms between
the application and persistence tiers already existed.

As we have previously shown, state changes occur only
during the commit of write transactions. The commits are
already ordered within one application server because of
the global (per application server) commit lock. Addition-
ally, the commit operation needs to provide ordering between
two concurrent commits from different servers, and to write
a change log that can be used by the other servers to up-
date their state. Each change log associates the commit ver-
sion with the identification of the versioned boxes that have
changed in that version. The change log is similar to a write
set, except that it does not actually contain the values writ-
ten, only the identification of the versioned boxes where they
were written, along with the version number. Figure 7 shows



1 class Transaction {
2 void persistChanges() {
3 beginNewDBTx();
4 boolean dbCommit = false;
5 try {
6 if (updateFromChangeLogs(true)) {
7 validate();
8 }
9 writeBackToDB();

10 writeChangeLog();
11 commitDBTx();
12 dbCommit = true;
13 } finally {
14 if ( ! dbCommit) {
15 abortDBTx();
16 throw CommitException;
17 }
18 }
19 }
20

21 boolean updateFromChangeLogs(boolean needLock) {
22 if (needLock) {
23 SELECT ... FOR UPDATE
24 } else {
25 SELECT ...
26 }
27 // process result-set and return whether state changed
28 }
29 }

Figure 7. The persistChanges operation ensures cluster-
wide serialization by relying on a database lock and vali-
dating changes against the most recent committed state.

the persistChanges operation with the required modifica-
tions.

After beginning a new database transaction the applica-
tion server starts by requesting an update to its state (line 6).
The updateFromChangeLogs queries the infrastructural table
that holds the change logs. The needLock flag set to true

causes the execution of a SELECT . . . FOR UPDATE SQL
query. Given that every committing transaction performs
the same database request, this query effectively obtains a
cluster-wide lock, and establishes the necessary total order
for all commits. The lock is held until the database transac-
tion finishes. The result of the query is the list of change logs.
Next, these changes are applied in memory: For each com-
mitted transaction, a new version is added to the correspond-
ing versioned boxes, setting the new value with the special
NOT LOADED flag. By doing so, rather than loading the most
recent value of every versioned box that has changed, we
avoid additional database queries within the critical region.
In fact, these values may never be needed in this application
server, but if they are, when a transaction needs them, the
normal database load will be triggered, as discussed in Sec-
tion 3.4. Finally, the updateFromChangeLogs returns an indi-
cation of whether it performed any state changes. If so, then
the transactional system now needs to revalidate the mem-
ory transaction, because the previous validation (Figure 6,
line 5) was performed in an earlier state. For code correction,
it would be enough to perform validation only once, after
checking the database for any updates. However, database
access is much more expensive than in-memory validation,
so the first validation allows for quick early conflict detec-

tion and, thus, can avoid the cost of a database access for a
transaction that is found to be already invalid with the exist-
ing in-memory state.

Next, the commit proceeds as before, writing back the
changes of the current transaction. Additionally, it writes the
change log for the current transaction. When the database
transaction commits, changes will be visible to other appli-
cation servers. As before, if something fails (noncatastroph-
ically) during the commit and before the database transac-
tion commits, the system will abort the transaction. After
the database commit, the only possible causes for failure are
considered catastrophic for the application server, and when
it restarts it will view the transaction as committed.

Even though state changes only occur during a commit,
their occurrence must be taken into account also during the
start of a new transaction. In a clustered environment, ev-
ery new transaction must check the change log for possible
updates from other servers. This is required to ensure that
future database reads are consistent with the global version
clock that the application server keeps. Recall that we do
not store versions in the database. So, when a new memory
transaction begins and opens a database transaction (to en-
sure consistent reads during loads from the database), it will
see the most recent committed data. Thus, it needs to update
the state in memory from the change log; otherwise it would
load data with the wrong version.

There is yet another important reason to update from the
change log in the beginning of every transaction: To ensure
strict serializability for the clustered system. As an exam-
ple, suppose that in a cluster of two application servers, a
client application performs an update request (R1) to an
application server (AS1), which is observed to have been
completed before another client application executes an-
other request (R2) to the other application server (AS2).
We can ensure that the execution of R2 will already see
the effects of R1, because the update from the change log
in the beginning of the second transaction will necessarily
occur after the database commit of the first transaction. Fig-
ure 8 presents the regular begin operation extended to in-
voke updateFromChangeLogs. The difference in this invoca-
tion from the one performed inside the commit is that it sets
the needLock flag to false: It does not need to acquire the
cluster-wide lock, because it will only read from the change
log. However, because reading the change log may lead to
updates in DOs, these updates need to acquire the same lock
as the commit (Figure 6, line 3).

4. Evaluation
Since its extraction from the FénixEDU web application, the
Fénix Framework has been used to develop several other
real-world applications, but FénixEDU is still the largest
application that we know of that uses the approach that we
propose in this paper.



1 class Transaction {
2 void begin() {
3 beginNewDBTx();
4 updateFromChangeLogs(false);
5 // rest of normal begin
6 }
7 }

Figure 8. The beginning of a transaction in a clustered en-
vironment, not only opens a database transaction to ensure
snapshot isolation for loading, but it also updates the appli-
cation server’s state with the most recent commits.

In the following subsection we present some of the sta-
tistical data collected over the last years both for FénixEDU
and for •IST (read as “dot IST”), which is another real-world
web application that started to be developed with the Fénix
Framework in 2008. These statistical data allow us to an-
alyze the typical workload of these applications, which, as
we shall see, have very high read/write ratios and a remark-
ably low rate of conflicts. The goals of this initial evaluation
subsection are twofold. First, it allows us to show that it is
feasible to ensure strict serializability for all business trans-
actions without incurring into many conflicts, which could
lead to poor performance of the system. Second, it provides
us with extensive data regarding workload patterns for two,
independently developed, real-world complex web applica-
tions, adding real evidence to the general belief that such
applications have many more reads than writes.

To evaluate the performance benefits of our architec-
ture, however, these real-world applications are not the best
fit. Even though performance problems in the FénixEDU
application were one of the primary reasons for develop-
ing this architecture, we do not have quantitative measure-
ments of the performance benefits of the new architecture for
FénixEDU: We have only anecdotal evidence from its users
that the performance of the application increased signifi-
cantly once the new architecture was adopted, even though
the load of the system increased steadily overtime and the
hardware remained the same.

Unfortunately, as in most real-world scenarios, it is overly
complex and expensive to reimplement these applications
with a traditional architecture, so that we could compare the
two alternatives. Instead, we chose a standard JDBC-based
implementation of a widely known application server bench-
mark, the TPC-W, and reimplemented it using the Fénix
Framework. In subsection 4.2 we use the two implementa-
tions of this benchmark to do a more thorough performance
evaluation of our architecture.

4.1 Workload Patterns of Real-world Applications
using the Fénix Framework

FénixEDU is a large web application deployed as part of an
academic information system for Higher Education devel-
oped at Instituto Superior Técnico (IST), the largest school
of engineering in Lisbon, Portugal. IST is home to more
than 6,000 undergraduate students (BSc), 4,000 graduate
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Figure 9. Total number of transactions per quarter in
FénixEDU.

students (MSc and PhD), and around 1,100 faculty members
and researchers. FénixEDU supports the majority of IST’s
web-based functionalities for the entire school ranging from
courses and academic management to administrative sup-
port, scientific support, and admissions. The functionalities
it provides can be as simple as logging a summary for a class
or as complex as generating and validating timetables for the
entire school.

The development of FénixEDU begun in 2002, following
the at-the-time best practices of software development and
engineering: It was based on a traditional web application
architecture. Following a rapid evolution of its feature set,
with an ever increasing number of users, in late 2003 the ap-
plication started to have not only performance problems, but
was also facing development problems due to the complex-
ity of the programing model, which was compounded by the
pressure put on developers to make the application perform
better. These problems urged an architectural shift to the ar-
chitecture that we described in this paper.

Since September 2005, the application has been running
with this new architecture, which has since then been ex-
tracted into the Fénix Framework. Currently, the FénixEDU
web application contains approximately 1.2 million lines of
code, over 8,000 classes, of which more than 1,200 repre-
sent domain entities described in the DML. It has over 3,600
different web pages for user interaction. Every 5 minutes,
FénixEDU logs statistics about its operation. It is by far the
largest application using the Fénix Framework, and the one
from which we have collected the most statistical data.

Figure 9 shows the evolution in the total number of trans-
actions processed per quarter since the last quarter of 2006.
Overall, the number of transactions has been increasing,
which we can relate to the continuous increase in the func-
tionalities provided by the system to its users. The fluctu-
ations occur mostly because users’ activity is not constant



 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 1  3  5  7  9  11  13  15  17  19  21  23  25  27

N
um

be
r 

of
 tr

an
sa

ct
io

ns

Day of month

Figure 10. Daily number of transactions in FénixEDU dur-
ing February 2011.

over the year. For example, during vacation periods, activity
drops considerably.

FénixEDU processes a daily average of 1 million trans-
actions during work days. The peak usage of the system oc-
curs twice a year, when the enrollment period for the next
semester opens, at which time nearly 10,000 students hit the
system at the same time. Figure 10 shows one such peak
during last February. During the entire day of February 10,
2011, the system processed 3.7 million transactions. How-
ever, enrollments only started at 6:00 P.M. and in the fol-
lowing 60 minutes the system processed 1.1 million transac-
tions, which amounts to a peak of more than 300 transactions
per second.

In Figure 11 we present the daily rate of write transactions
and conflicts, also for February 2011. Notice that under nor-
mal load, over 98% of the total number of transactions pro-
cessed by the system are read-only transactions, and of the
remaining 2% (the write transactions) there are on average
less than 0.2% restarts due to a conflict. At peak times, the
rate of write transactions goes up, but still remains under 4%
and the conflicts rise to about 9% (of the write transactions).

Note, however, that this throughput is not limited by the
hardware, but merely reflects the demand made to the sys-
tem by its users. In fact, all this is run on a cluster of two ma-
chines (for fault-tolerance) equipped with 2 quad-core CPUs
and 32GB of RAM each that are under-used. Data loaded in
memory usually take approximately 6GB, whereas the rela-
tional database size (measured by MySQL) is under 20GB.
This shows that it is possible to deploy a real-world applica-
tion running under strict-serializability semantics without a
negative effect on performance. We believe that these char-
acteristics of the FénixEDU web application are not uncom-
mon, and that, in fact, are representative of a large fraction
of modern enterprise applications, for which our new archi-
tecture provides a very good fit.
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Figure 11. Daily rate of writes and conflicts in FénixEDU
during February 2011.
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Figure 12. Total number of transactions per quarter in •IST.

More recently, in mid 2008, IST begun the development
of another web application, named •IST. The goal of this
new web application is to support many of IST’s workflow
processes. It includes the management of several adminis-
trative tasks, such as acquisition processes, travel authoriza-
tions, administrative staff evaluation, internal staff transfers,
and document management, among others. It is dedicated to
support the work of faculty members, researchers, and ad-
ministrative staff. Because it does not include the students,
its user base is much smaller than FénixEDU’s, but is used
in a more regular fashion by its users.

In Figure 13 we show the evolution in the total number of
transactions processed per quarter, since the initial deploy-
ment of this application. As we collected statistical data for
the entire lifetime of this application, we may see a steady in-
crease of the application’s usage, since its early beta stages
in the last quarter of 2008, when both few processes were
supported and few users were using the application. Since
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Figure 13. Quarterly rate of writes and conflicts in •IST.

then, the application has been opened to its entire user base
and has also included many more features, leading to a sig-
nificantly higher number of transactions processed in recent
quarters. It is expected that this growth may continue for a
while as new features are added. However, it may eventually
reach a plateau, because of the limited number of users.

Unlike the FénixEDU, the •IST does not have any pub-
licly accessible web pages, other than the login page. The
functionalities it provides tend to increase the number of
write transactions, because many of the operations provided
to the users involve the execution of workflow steps that
cause changes to the application state. Figure 13 presents
the rate of write transactions and conflicts in this applica-
tion, and provides some insightful information. First, we
confirm that, as expected, the percentage of write transac-
tions is higher than in FénixEDU. However, it shows a ten-
dency towards decreasing. In fact, the absolute number of
write transactions per quarter (not shown in the plots) has
been increasing, but so has the number of read-only transac-
tions. And the latter, have increased much more. We believe
that this is a natural consequence of having more data avail-
able in the system, because more users access the system to
check the status of the workflows in which they take part. So,
in fact we draw a very interesting conclusion from this obser-
vation, and it reinforces our belief that, in this kind of appli-
cations, the reads largely outnumber the writes. Even when
a web application is more geared towards operations that in-
volve having its users making changes to the application’s
data, as in •IST, their users tend to execute many more of
the read operations. Finally, despite the higher rate of writes,
the conflicts remain close to zero. The abnormal spike in the
first quarter of 2010 is due to the execution of large migra-
tion scripts that executed scattered throughout the weeks and
often conflicted with users’s activities. Nevertheless, it rep-
resents a very low percentage of the write transaction.

4.2 Performance Comparison with a Standard JDBC
Architecture

The TPC-W is a benchmark created by the Transaction Pro-
cessing Performance Council (TPC) 8. It implements a web
commerce application for an online bookstore. It has the typ-
ical 3-tiered architecture, where the clients (a set of emulated
web browsers) access a web server to browse and buy books.
The state of the application is stored persistently in a rela-
tional database. The TPC-W has already been discontinued
by the TPC, but nevertheless it still provides a simulation of
the class of applications that we are interested in. Moreover,
there was already an open-source implementation available9

in Java that we could immediately use.
We started from the JDBC-based implementation and

modified it to implement our architecture. The detailed
changes are documented online 10, together with instruc-
tions for running both implementations. In short, we defined
the object-oriented domain model of the application using
the DML, and then implemented the functionalities that cor-
responded to the SQL queries found in the original version.
The browser emulator for the client remained unchanged, as
we completely reused the presentation layer of the applica-
tion server (developed using Java Servlets).

The primary performance metric of the TPC-W mea-
sures throughput as the number of Web Interactions Per Sec-
ond (WIPS). Each successful request/response interaction
between the client and the server counts as one web inter-
action, so the higher the WIPS the better the performance.

We compared the average WIPS obtained by the two im-
plementations of TPC-W (FF-based and JDBC-based) in dif-
ferent scenarios. We used two interaction mixes from the
TPC-W specification: The browsing mix, and the shopping
mix. The former mix performs browsing (read-only) opera-
tions approximately 95% of the time, whereas the latter per-
forms browsing only for 80% of the time. The rest of the
time the clients perform shopping requests that execute write
transactions. Besides the mixes specified by the TPC, we
created a mix of our own, which consisted of 100% brows-
ing interactions (read-only mix). Despite not representing the
common case, this scenario is relevant to us, because it exer-
cises the best possible throughput for our architecture, given
that it minimizes the required database round trips.

Our architecture was designed to work best on a single
application server with many cores and large memory heaps.
So, the first group of tests were performed running a single
application server in a machine with a NUMA architecture,
built from four AMD Opteron 6168 processors. Each pro-
cessor contains 12 cores, thus totaling 48 cores. The system
had 128GB of RAM, more than enough to keep data from all
processes (clients, application server and database) loaded

8 http://www.tpc.org
9 http://tpcw.deadpixel.de/
10 http://www.esw.inesc-id.pt/permalinks/

fenix-framework-tpcw
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Figure 14. Throughput for a single application server, with
10 concurrent clients, varying the number of items in the
database. Our implementation consistently shows a higher
throughput.

in main memory. The largest amount of memory ever re-
quired by the application server, for a single test case, never
exceeded 15GB. We tested using Java 6 with HotSpot(TM)
64-Bit Server VM (19.1-b02). The database was MySQL 5.1
and the application server was installed as a web application
on Apache Tomcat 6.

For the first test the database was populated with three
different data sets of 1,000, 10,000, and 100,000 books,
respectively. The WIPS we obtained for all the configura-
tions tested are shown in Figure 14. These are the average
WIPS achieved when running with 10 clients that concur-
rently perform requests to the application server. Each client
performed its own requests sequentially, with each request
being performed immediately after receiving the server’s re-
sponse (client’s configuration parameter THINK TIME = 0).
This value does not simulate the interaction patterns of real
users, which always spend some time between consecutive
interactions, but our goal was to produce an uninterrupted
flow of requests to stress test the application server, and mea-
sure how many WIPS it could process under the given load.

The implementation based on the Fénix Framework
shows a higher throughput than the JDBC-based implemen-
tation for all tests. It shows on average 2.4 times more WIPS,
and up to 3.7 times more in the case of the read-only work-
load for 10,000 items. These results clearly show that it is
possible to provide the programmer with strict-serializability
semantics and an increased application performance.

Despite these good results, we believe that they could
be even better, because in our version of the TPC-W with
the Fénix Framework, we tried to do the most straightfor-
ward implementation that closely mimicked the original do-
main structure and SQL queries. In doing so, we have of-
ten produced an implementation that is not optimized. As
an example, consider the operation that lists the best sell-

Mix
WIPS

FF JDBC
Read-only 1904.00 159.68
Browsing 659.77 151.71
Shopping 341.58 279.29

Table 1. Absolute WIPS for 10 clients. The baseline values
for our implementation already start atop of the values for
the original implementation.

ers. This operation requires looking at the 3333 most recent
orders. To speed up this web interaction we could have eas-
ily maintained a list with the most recent orders, but we did
not. Instead, we iterated through the list of all orders ev-
ery time to produce the list of most recent orders. Note that
the original SQL query (...WHERE orders.o id > (SELECT

MAX(o id)-3333 FROM orders)...) performs much quicker,
because the o id column is the primary key, thus indexed.
This kind of optimization is tempting for at least two rea-
sons. First, it is trivial to implement. Second, it is something
that a programmer of an object-oriented application would
probably do, given the requirement to compute the best sell-
ers. Arguably, we could have made an implementation that
would be even faster than it already is, if we had built the ap-
plication’s domain model from scratch, rather than adapted
the SQL-based implementation.

We identify two reasons for our current performance
gains. One reason has to do with the reduction in database
queries: Once loaded from the database, data remain in the
application server’s memory for as long as possible, whereas
in the original implementation every client request requires
at least one database query to get the information needed.
The other reason is that, in our transactional system, read-
only transactions run completely unaffected by other trans-
actions.11 Being the majority of operations read-only and
given that the entire database fits into main memory, most of
the requests can be answered much faster in our implemen-
tation.

In the next set of tests we intended to measure how
the two implementations scale for an increasing number of
clients. We populated the database with 1,000 books and
172,800 clients,12 and tested the application with the num-
ber of concurrent clients ranging from 10 to 60 in increments
of 10 clients per test. Recall that the hardware provides 48
cores. The work performed by the clients is almost negli-
gible. Most of the computation time is spent either in the
application server or in the database processes.

Figure 15 shows the speed-up obtained for 20 to 60
clients. We calculated the speed-up taking as the baseline
the WIPS obtained with 10 clients for each test scenario,
which are shown in Table 1. Notice that the absolute WIPS

11 Write transactions contend for the global commit lock, during the commit
phase only.
12 According to the TPC-W specification, the database must be populated
with 2880× c clients in order to use up to c concurrent clients.
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Figure 15. Speed-up for a single application server and a
varying number of concurrent clients. The baseline is the
throughput for 10 clients.

shown in this table are fewer than those shown in Figure 14
for 1,000 books, because for this test the database had to
be populated to accommodate up to 60 concurrent clients,
which increased the database size and, consequently, the
time per request, thus lowering throughput.

From Figure 15 it is clear that our solution makes better
use of the available hardware parallelism: For the read-only
and shopping mixes, throughput increases when compared
to the baseline. It stabilizes around 1.4 even tough the read-
only mix is capable of up to 1.6 for 20 clients. For the shop-
ping mix it does not improve, but at least it does not worsen
like the JDBC-based implementation does. The original ver-
sion never improves: It remains close to 1 for the read-only
mix, and it deteriorates a lot for the other two mixes, most
notably for the shopping mix, going down to less than 0.2 of
its baseline value.

Considering data from Table 1, again we can see that
our solution outperforms the original implementation. This
is even more so as the number of clients increases and the
values for speed-up grow apart between the two implemen-
tations. In Figure 16 we present the performance of the
FF-based implementation relative to the JDBC-based imple-
mentation. As expected, the relative performance increases
with the percentage of read operations. Once more, this is
due to the reduction in the cost of database access, especially
for read-only transactions. Also, the relative improvement is
much higher than in the first test, because the database size
is much larger, and so we gain by having all of the data in
memory.

Note however, that in our single-server tests we did not
take advantage of knowing that there was only one appli-
cation server running and, therefore, the framework still
opened a database connection in the beginning of every
memory transaction, as presented in Section 3.6. Never-
theless, in this configuration, the updateFromChangeLogs
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Figure 16. Performance of the FF-based implementation
relative to the JDBC-based version.

method always returns an empty change log, because the
only application server running will, necessarily, be up to
date. This means that we could increase even further the
performance when running in a single application server en-
vironment. In Figure 17, we present this gain for the extreme
case of running a read-only mix. Here the application server
takes advantage of knowing that it is running a single in-
stance, and it only opens a database connection whenever it
needs to load missing data into main memory. During the
initial warm-up period, all data eventually becomes loaded
and no further database access is needed at all. In this case,
we can see that the application is capable of using all of the
available hardware parallelism, as the WIPS increase up to
the point where the clients reach the number of available
cores. This is due to the use of JVSTM, in which read-
only transactions do not entail any blocking synchronization
whatsoever. If we had kept object versions in persistent stor-
age, then we could also have tested the other mixes with this
approach. Unfortunately, the current database structure only
keeps the latest version, forcing us to open a database con-
nection at the beginning of each transaction, to ensure con-
sistent reads of any values that may be missing in memory.
Finally, Figure 17 corroborates an important underlying as-
sumption in our architecture: Database access takes a heavy
toll on the performance of the application server. By re-
ducing this cost, our approach is already capable of greatly
increasing throughput, when compared to the original im-
plementation. However, there is still much to gain, if we can
further reduce the number of accesses to the database.

Our architecture is better suited for a single applica-
tion server, running on hardware with many cores and large
heaps because, in clustered environments, write transactions
cause the invalidation of cache entries in the other applica-
tion servers, which in turn forces their reloading from the
database. Still, it was designed to support multiple appli-
cation servers sharing the same database. So, we performed
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another test to measure the throughput that could be achieved
by increasing the number of application servers for a fixed
number of clients. For this final test we used a cluster of ten
machines, all connected to the same local network through
a 100Mbps switch. Each machine had 2 quad-core Intel
Xeon E5506 processors and 8GB of RAM. The versions
of Java, MySQL and Tomcat were the same as before. The
database was setup in one machine, the clients’ simulator
in another, and we deployed from one to eight application
servers, each in its own machine. The database was popu-
lated to support 40 concurrent clients. The clients’ simula-
tor always executed 40 clients evenly distributed across the
deployed servers. For example, when running a single appli-
cation server all the 40 clients were directed to that server,
whereas when running eight application servers 5 clients
were directed at each server.

Figure 18 shows the results obtained. We decided to dis-
play the read-only mix in a separate plot, because the WIPS
of the FF-based implementation are so much higher than
all others that showing them together would make the in-
formation harder to read. In the read-only mix, the appli-
cation servers’ caches are never invalidated, because of the
absence of writes. For this reason, the throughput increases
much more than for other scenarios, as each server is almost
independent from the others. The only common aspect is that
they all contact the same database.

Considering the other mixes, there is a special condition
that occurs in the FF-based implementation for one applica-
tion server, which causes the WIPS to be close to zero. Here
is what happens: The data from the database fits entirely
in the application server’s memory, taking around 70% of
the available memory. Because of the transactional system’s
infrastructure, update operations take up additional mem-
ory in the application server, mostly due to the keeping of

multiple versions that may still be needed for some trans-
action running in an older version. As memory fills up, the
garbage collector starts working hard to remove unreachable
objects, which include older versions and may include evict-
ing entries from the object cache. Without special tuning
of the Java’s garbage collector for this particular workload,
the default implementation often performs full garbage col-
lections. Once this occurs the whole system degrades. This
combination of events leads to a throughput close to zero,
as the application server spends most of its time running
single-threaded full garbage collections. In the single server
scenario, the given rate of write operations combined with
memory and garbage collector limitations caused a huge
slowdown. In such cases, our implementation will underper-
form, unless some tuning is applied.

As we split this load by two servers the problem goes
away, and we outperform the original implementation, once
more. However, the relative performance increase for two or
more servers is less noticeable than in the previous single-
server tests, because while on the one hand the increase in
the number of application servers leads to an increase in
parallel processing, on the other hand it also leads to an
increase in the number of cache invalidations of each server
due to writes by the other servers.

The WIPS for the JDBC-based implementation barely
change for any number of servers, in each of the three
mixes. In this implementation, most of what the application
servers do for each request depends on a database trans-
action. Adding more servers does not reduce the constant
load of 40 concurrent clients requesting database transac-
tions. Thus, we might expect that increasing the number of
cores in the database machine would naturally lead to an
increase in the system’s performance, but that is not nec-
essarily true. If that was the case, then in Figure 15 we
should also see some improvement in the JDBC-based im-
plementation as we increase the number of clients, because
the machine has 48 cores. In fact, despite the underlying
architecture of relational databases having been developed
many years ago, their scalability is still a matter of recent
discussion [28]. To this contributes the fact that database
architectures originated long before computers with many
cores became commodity hardware. Despite their long-time
focus on efficiently handling multiple concurrent requests,
database architectures have also been faced with limited
hardware parallelism, which reduces transactions’ simulta-
neous access to its database’s internal structures. It has been
shown [22] that popular open-source database implementa-
tions fail to take advantage of multicore architectures, and
simply do not scale as expected.

5. Related Work
Snapshot isolation was first defined in [2]. Today, most
database vendors support snapshot isolation as the strongest
isolation level (confusingly, also known as serializable in
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Figure 18. Throughput in a clustered environment for 40
clients evenly split across the servers.

some database implementations), which, despite exhibiting
none of the anomalies that the SQL standard prohibits, is
not serializable. Since the broad adoption of this isolation
level by database implementations, other researchers have
cataloged the weaknesses present in this isolation level [12].

In [13] the authors propose a theory to identify when non-
serializable executions of applications can occur under snap-
shot isolation, which has been used to manually demonstrate
that some programs may safely run under snapshot isolation
without exhibiting any anomalies. This is done, by analyz-
ing possible interferences between concurrent transactions.
Additionally, the authors also propose ways to eliminate the
identified interferences, but at the cost of manually modify-
ing the program logic of these applications to make it serial-
izable.

Later work [1], has demonstrated that the risks involved
in using weaker consistency semantics often do not pay off
for the absence of serializability. The effort of ensuring safe
executions under snapshot isolation is high, and in many
applications the performance penalty for running with full
serialization guarantees is low, when compared to the risks

of data corruption because of concurrency bugs due to the
absence of strong consistency guarantees.

In another work [23] the authors propose an automated
tool to detect the snapshot isolation anomalies, but to ensure
full coverage, they incur in false positives. Also, computing
the minimum set of conflicting transaction pairs that require
modification is a NP-Hard problem. Regardless, modifying
the program code to eliminate the conflicts is still a manual
task.

An alternative to changing program code is to change the
transactional engine to ensure strict serializability. This is
proposed in [8]. The authors describe an algorithm that pro-
vides serializability, while showing, in most cases, a perfor-
mance similar to the one obtained when running with just
snapshot isolation. This work, albeit different from ours,
provides evidence that serializability does not incur neces-
sarily in performance problems.

Yet another approach to ensuring program correctness is
presented in [3], which defines a new correctness criteria—
semantic correctness—that is weaker than serializability,
and describes the conditions in which executions preserve
given integrity constraints for each isolation level.

Neither of the previously mentioned approaches reduces
the number of database queries. Such requires caching on the
application server. In [25], the authors present a versioned
object cache for J2EE that reduces the number of database
accesses and provides snapshot isolation on top of a rela-
tional database that must also provide snapshot isolation.
They also describe a vertical replication model where each
node in the cluster is built from a relational database and a
J2EE application server. Their object cache allows for a re-
duction in the number of database requests, just like ours, but
there are other important differences. Most notably, they do
not ensure object identity: When an object is modified a new
copy is created, which does not allow for object reference
comparison. In our implementation, a single object instance
is shared among all transactions. Additionally, our transac-
tional system only blocks during the commit of a write trans-
action whereas they require locking for each object update
operation. Most importantly, we ensure strict serializability
across the cluster whereas their implementation ensures only
snapshot isolation. The focus of their work is on availability
and scalability, which led to an architecture of one database
per application server, with the cache updates being sent over
a dedicated group communication system. However, there is
no protocol for dynamically adding a new node to the clus-
ter, which would require database state synchronization to
keep up with the rest of the system. In our solution, there is
a single point of access to the database—which can be repli-
cated internally—and the cache in each application server is
updated from the database, allowing for adding and remov-
ing application servers on-the-fly.

Initially, our work concentrated mainly on improving per-
formance for applications running on single computers with



many cores. The performance improvements attained in the
clustered environment are, in a sense, a by-product of this
architecture, which we believe can be even further improved
by taking into account the specificities of a distributed sys-
tem in the design of the system. The work reported in [10,
27], which extends the JVSTM design with scalable and
fault-tolerant distributed transactional memory algorithms,
is a step in that direction. This work concentrates only on the
distribution aspects and, like [25], builds on a group commu-
nication system between the nodes, currently implementing
only a single entry point to the persistence tier.

6. Conclusion
In this paper we have described a new architecture for the
development of enterprise applications, which is based on
shifting transaction control from the database to the appli-
cation server tier. This architectural change was made pos-
sible by developments both in hardware as well as software
that did not exist when relational databases became widely
adopted, thus biasing development towards current architec-
tures. In hardware, the change was enabled by the develop-
ment of machines with many cores and large memory heaps.
In software, STM technology has enabled us to think in
terms of transactions managed by the application server and
also to a change in the way persistent application objects are
managed in main memory.

Some observations led to this change. For one, program-
mers are often burdened with additional programming ef-
forts because of limitations in the transactional semantics
provided by existing systems. By providing strict serializ-
ability the programming of concurrent operations becomes
simpler and less prone to error. Another problem is related
to the cost of database access in current enterprise applica-
tions. Often these applications are feature-rich with complex
domain and business logic that is implemented in object-
oriented applications. These cause several round trips to the
persistence tier to transactionally manipulate persistent ap-
plication data. Often, simply the execution of a read-only
operation can trigger several round trips to the persistence
tier. The accumulated latency of this communication is no
longer negligible and is perceived by the client of the ser-
vice. Shifting transaction control to the application tier can
reduce the need for these accesses with a significant reduc-
tion in the time it takes to answer a client’s request.

The architecture that we presented is designed to make
good use of the improved computational capacity of single
application servers running on hardware with many cores
and large memory heaps. It excels when applied to object-
oriented enterprise applications that have complex object
structures and exhibit many concurrent accesses with a high
read/write ratio. Based on the evidence that we collected
over the past six years, during which we employed this archi-
tecture to several applications and collected statistics about
their workload patterns, we believe that many of today’s

mainstream web applications have these same characteris-
tics. Thus, we claim that our architecture is a better solution
for many, if not most, of the modern enterprise applications.

It is not a panacea, however, and, as such, is not exempt
of problems. For instance, even though our implementation
works in clustered environments, it suffers from cache in-
validations in scenarios where the rate of write operations is
higher. Looking ahead, it is our intention to continue to work
in the development of this architecture, trying to broaden
the scenarios in which it can be applied to increase applica-
tion performance and safety, namely in write-heavy scenar-
ios and in continued reduction of the database access costs.
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[8] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable isola-
tion for snapshot databases. ACM Transactions on Database
Systems, 34(4):20:1–20:42, Dec. 2009. doi: 10.1145/1620585.
1620587.

[9] N. Carvalho, J. Cachopo, L. Rodrigues, and A. R. Silva. Ver-
sioned transactional shared memory for the FénixEDU web
application. In Proceedings of the 2nd Workshop on Depend-
able Distributed Data Management (WDDDM ’08), pages
15–18, Glasgow, Scotland, 2008. ACM.

[10] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues.
D2STM: Dependable distributed software transactional mem-
ory. In Proceedings of the 15th IEEE Pacific Rim Interna-
tional Symposium on Dependable Computing (PRDC ’09),
pages 307–313, Shanghai, China, Nov. 2009.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):
107–113, Jan. 2008. doi: 10.1145/1327452.1327492.

[12] A. Fekete, E. O’Neil, and P. O’Neil. A read-only transaction
anomaly under snapshot isolation. ACM SIGMOD Record, 33
(3):12–14, Sept. 2004. doi: 10.1145/1031570.1031573.

[13] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha.
Making snapshot isolation serializable. ACM Transactions on
Database Systems, 30(2):492–528, June 2005. doi: 10.1145/
1071610.1071615.

[14] P. Felber, C. Fetzer, R. Guerraoui, and T. Harris. Transactions
are back—but are they the same? ACM SIGACT News, 39(1):
48–58, Mar. 2008. ISSN 0163-5700. doi: 10.1145/1360443.
1360456.

[15] S. M. Fernandes and J. Cachopo. Lock-free and scalable
multi-version software transactional memory. In Proceedings
of the 16th ACM symposium on Principles and Practice of
Parallel Programming (PPoPP ’11), pages 179–188, San An-
tonio, TX, USA, 2011. ACM.

[16] M. Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Professional, Boston, MA, USA, 2002.

[17] M. Fowler. Domain-Specific Languages. Addison-Wesley
Professional, 1st edition, 2010.

[18] R. Guerraoui and M. Kapalka. On the correctness of trans-
actional memory. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming (PPoPP ’08), pages 175–184, Salt Lake City, UT, USA,
2008. ACM. ISBN 978-1-59593-795-7. doi: http://doi.acm.
org/10.1145/1345206.1345233.

[19] T. Harris, J. R. Larus, and R. Rajwar. Transactional Memory,
2nd edition. Synthesis Lectures on Computer Architecture.
Morgan & Claypool Publishers, 2010.

[20] M. Herlihy. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems, 13(1):124–149, Jan.
1991. doi: 10.1145/114005.102808.

[21] C. Ireland, D. Bowers, M. Newton, and K. Waugh. A clas-
sification of object-relational impedance mismatch. In Pro-
ceedings of the 1st International Conference on Advances in
Databases, Knowledge, and Data Applications (DBKDA ’09),
pages 36 –43, Cancun, Mexico, Mar. 2009.

[22] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and
B. Falsafi. Shore-MT: A scalable storage manager for the
multicore era. In Proceedings of the 12th International
Conference on Extending Database Technology: Advances in
Database Technology (EDBT ’09), pages 24–35, Saint Peters-
burg, Russia, 2009. ACM.

[23] S. Jorwekar, A. Fekete, K. Ramamritham, and S. Sudarshan.
Automating the detection of snapshot isolation anomalies. In
Proceedings of the 33rd International Conference on Very
Large Data Bases (VLDB ’07), pages 1263–1274, Vienna,
Austria, 2007. VLDB Endowment.

[24] C. H. Papadimitriou. The serializability of concurrent
database updates. Journal of the ACM, 26(4):631–653, Oct.
1979. doi: 10.1145/322154.322158.

[25] F. Perez-Sorrosal, M. Patiño-Martinez, R. Jimenez-Peris, and
K. Bettina. Consistent and scalable cache replication for
multi-tier J2EE applications. In Proceedings of the 8th
ACM/IFIP/USENIX International Conference on Middleware
(Middleware ’07), pages 328–347, Newport Beach, CA, USA,
2007. Springer-Verlag.

[26] D. Pritchett. BASE: An acid alternative. Queue, 6(3):48–55,
May 2008. doi: 10.1145/1394127.1394128.

[27] P. Romano, N. Carvalho, M. Couceiro, L. Rodrigues, and
J. Cachopo. Towards the integration of distributed transac-
tional memories in application servers’ clusters. In The Third
International Workshop on Advanced Architectures and Al-
gorithms for Internet DElivery and Applications (AAA-IDEA
’09), Las Palmas, Gran Canaria, Nov. 2009. ICST, Springer.

[28] M. Stonebraker and R. Cattell. 10 rules for scalable perfor-
mance in ’simple operation’ datastores. Communications of
the ACM, 54(6):72–80, June 2011. doi: 10.1145/1953122.
1953144.

[29] W. Vogels. Eventually consistent. Communications of
the ACM, 52(1):40–44, Jan. 2009. doi: 10.1145/1435417.
1435432.


